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Abstract

Inducing diversity in the task of paraphras-
ing is an important problem in NLP with ap-
plications in data augmentation and conver-
sational agents. Previous paraphrasing ap-
proaches have mainly focused on the issue of
generating semantically similar paraphrases,
while paying little attention towards diversity.
In fact, most of the methods rely solely on
top-k beam search sequences to obtain a set of
paraphrases. The resulting set, however, con-
tains many structurally similar sentences. In
this work, we focus on the task of obtaining
highly diverse paraphrases while not compro-
mising on paraphrasing quality. We provide a
novel formulation of the problem in terms of
monotone submodular function maximization,
specifically targeted towards the task of para-
phrasing. Additionally, we demonstrate the ef-
fectiveness of our method for data augmenta-
tion on multiple tasks such as intent classifi-
cation and paraphrase recognition. In order
to drive further research, we have made the
source code available.

1 Introduction

Paraphrasing is the task of rephrasing a given text
in multiple ways such that the semantics of the
generated sentences remain unaltered. Paraphras-
ing Quality can be attributed to two key character-
istics - fidelity which measures the semantic sim-
ilarity between the input text and generated text,
and diversity, which measures the lexical dissimi-
larity between generated sentences.

Many previous works (Prakash et al., 2016;
Gupta et al., 2018; Li et al., 2018) address the
task of obtaining semantically similar paraphrases.
While it is essential to produce paraphrases with
high fidelity, it is equally important, and in many
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SOURCE – how do i increase body height ?
REFERENCE – what do i do to increase my height ?

BEAM
SEARCH

– how do i increase my height ?
– how do i increase my body height ?
– how do i increase the height ?
– how would i increase my body height ?

DIPS
(OURS)

– how could i increase my height ?
– what should i do to increase my height ?
– what are the fastest ways to increase my height ?
– is there any proven method to increase height ?

Table 1: Sample paraphrases generated by beam search
and DiPS (our method). It can be seen that DiPS offers
lexically diverse paraphrases without compromising on
fidelity.

cases desirable, to produce lexically diverse ones.
Diversity in paraphrase generation finds applica-
tions in text simplification (Nisioi et al., 2017; Xu
et al., 2015), document summarization (Li et al.,
2009; Nema et al., 2017), QA systems (Fader
et al., 2013; Bernhard and Gurevych, 2008), data
augmentation (Zhang et al., 2015; Wang and Yang,
2015), conversational agents (Li et al., 2016) and
information retrieval (Anick and Tipirneni, 1999).

To obtain a set of multiple paraphrases, most of
the current paraphrasing models rely solely on top-
k beam search sequences. The resulting set, how-
ever, contains many structurally similar sentences
with only minor, word level changes. There have
been some prior works (Li and Jurafsky, 2016; El-
hamifar et al., 2012) which address the notion of
diversity in NLP, including in sequence learning
frameworks (Song et al., 2018; Vijayakumar et al.,
2018). Although Song et al. (2018) address the
issue of diversity in the scenario of neural conver-
sation models using determinantal point processes
(DPP), it could be naturally used for paraphrasing.
On similar lines, subset selection based on Simul-
taneous Sparse Recovery (SSR) (Elhamifar et al.,
2012) can also be easily adapted for the same task.

Though these methods are helpful in maximiz-
ing diversity, they are restrictive in terms of re-



taining fidelity with respect to the source sen-
tence. Addressing the task of diverse paraphrasing
through the lens of monotone submodular func-
tion maximization (Fujishige, 2005; Krause and
Golovin; Bach et al., 2013) alleviates this problem
and also provides a few additional benefits. Firstly,
the submodular objective offers better flexibility
in terms of controlling diversity as well as fidelity.
Secondly, there exists a simple greedy algorithm
for solving monotone submodular function maxi-
mization (Nemhauser et al., 1978), which guaran-
tees the diverse solution to be almost as good as
the optimal solution. Finally, many submodular
programs are fast and scalable to large datasets.

Below, we list the main contributions of our pa-
per.

1. We introduce Diverse Paraphraser using
Submodularity (DiPS). DiPS maximizes a
novel submodular objective function specif-
ically targeted towards paraphrasing.

2. We perform extensive experiments to show
the effectiveness of our method in generat-
ing structurally diverse paraphrases without
compromising on fidelity. We also com-
pare against several possible diversity induc-
ing schemes.

3. We demonstrate the utility of diverse para-
phrases generated via DiPS as data augmen-
tation schemes on multiple tasks such as in-
tent and question classification.

We have made DiPS’s source code available at
https://github.com/malllabiisc/DiPS

2 Related Work

Paraphrasing a given sentence is an important
problem and numerous approaches have been
proposed to address it. Recently sequence-to-
sequence based data-driven deep learning mod-
els have been proposed, which try to address the
limitations of earlier traditional rule-based (McK-
eown, 1983) methods. Prakash et al. (2016) em-
ploy residual connections in LSTM to enhance the
traditional sequence-to-sequence model. Gupta
et al. (2018) provide a VAE (Kingma and Welling,
2013) based framework to improve the quality of
generated paraphrases. Li et al. (2018) propose
a reinforcement learning based model which uses
pointer-generator (See et al., 2017) for generat-
ing paraphrases and an evaluator based on (Parikh

et al., 2016) to penalize non-paraphrastic genera-
tions. Several other works (Cao et al., 2017; Iyyer
et al., 2018) exist for paraphrasing, though they
have either been superseded by newer models or
are not-directly applicable to our settings. How-
ever, most of these methods focus on the issue
of generating semantically similar paraphrases,
while paying little attention towards diversity.

Diversity in paraphrasing models was first ex-
plored by (Gupta et al., 2018) where they pro-
pose to generate variations based on different sam-
ples from the latent space in a deep generative
framework. Although diversity in paraphrasing
models has not been explored extensively, meth-
ods have been proposed to address diversity in
other NLP tasks (Li et al., 2016, 2015; Gimpel
et al., 2013). Diverse beam search proposed by
(Vijayakumar et al., 2018) generates k-diverse se-
quences by dividing the candidate subsequences at
each time step into several groups and penalizing
subsequences which are similar to prior groups.
The most relevant to our approach is the method
proposed by (Song et al., 2018) for neural conver-
sation models where they incorporate diversity by
using DPP to select diverse subsequences at each
time step. Although their work is addressed in the
scenario of neural conversation models, it could be
naturally adapted to paraphrasing models and thus
we use it as a baseline.

Submodular functions have been applied to a
wide variety of problems in machine learning
(Iyer and Bilmes, 2013; Jegelka and Bilmes,
2011; Krause and Guestrin, 2011; Kolmogorov
and Zabih, 2002) and have recently attracted much
attention in several NLP tasks including docu-
ment summarization (Lin and Bilmes, 2011), data
selection in machine translation (Kirchhoff and
Bilmes, 2014) and goal-oriented chatbot training
(Dimovski et al., 2018). However, their applica-
tion to sequence generation is largely unexplored.

Data augmentation is a technique for increas-
ing the size of labeled training sets by leverag-
ing task specific transformations which preserve
class labels. While the technique is ubiquitous
in the vision community (Krizhevsky et al., 2012;
Ratner et al., 2017), data-augmentation in NLP is
largely under-explored. Most current augmenta-
tion schemes involve thesaurus based synonym re-
placement (Zhang et al., 2015; Wang and Yang,
2015), and replacement by words with paradig-
matic relations (Kobayashi, 2018). Both of these

https://github.com/malllabiisc/DiPS


Algorithm 1: Greedy selection for submodular op-

timization (Cardinality constraint)
Input: Ground Set: V

Budget: k
Submodular Function: F

1 S ← ∅
2 N ← V
3 while |S| < k do
4 x∗ ← argmaxx∈NF(S ∪ {x})
5 S ← S ∪ {x∗}
6 N ← N \ {x∗}
7 end
8 return S

approaches try to boost the generalization abili-
ties of downstream classification models through
word-level substitutions. However, they are in-
herently restrictive in terms of the diversity they
can offer. Our work offers a data-augmentation
scheme via high quality paraphrases.

3 Background: Submodularity

Let V = {v1, . . . , vn} be a set of objects, which
we refer to as the ground set, and F : 2V → R
be a set function which works on subsets S of V
to return a real value. The task is to find a subset
S of bounded cardinality say |S| ≤ k that max-
imizes the function F , i.e., argmaxS⊆V F(S). In
general, solving this problem is intractable. How-
ever, if the functionF is monotone non-decreasing
submodular, then although the problem is still NP-
complete, there exists a greedy algorithm ( Algo-
rithm 1) (Nemhauser et al., 1978) that finds an
approximate solution which is guaranteed to be
within 0.632 of the optimal solution.

Submodular functions are set functions F :
2V → R, where 2V denotes the power set of
ground set V. Submodular functions satisfy the
following equivalent properties of diminishing re-
turns: ∀X,Y ⊆ V with X ⊆ Y , and ∀s ∈ V \ Y ,
we have the following.

F(X∪{s})−F(X) ≥ F(Y ∪{s})−F(Y ) (1)

In other words, the value addition due to incorpo-
ration of s decreases as the subset grows from X
to Y . Equivalently, ∀X,Y ⊆ V , we have,

F(X) + F(Y ) ≥ F(X ∪ Y ) + F(X ∩ Y )

In case the above inequalities are equalities, the
function F is said to be modular. Let F(s|X) ,
F(X∪{s})−F(X). Therefore, F is submodular
if F(s|X) ≥ F(s|Y ) for X ⊆ Y .

Algorithm 2: DiPS
Input: Input Sentence: Sin

Max. decoding length: T
Submodular objective: F
No. of paraphrases required: k

1 Process Sin using the encoder of SEQ2SEQ
2 Start the decoder with input symbol sos
3 t← 0; P ← ∅
4 while t < T do
5 Generate top 3k most probable subsequences
6 P ← Select k based on argmaxX⊆V (t) F(X)

using Algorithm 1
7 t = t+ 1
8 end
9 return P

The second criteria which the function needs
to satisfy for Algorithm 1 to be applicable is of
monotonicity. A set functionF is said to be mono-
tone non-decreasing if ∀X ⊆ Y,F(X) ≤ F(Y ).

Submodular functions are relevant in a large
class of real-world applications, therefore mak-
ing them extremely useful in practice. Addition-
ally, submodular functions share many common-
alities with convex functions, in the sense that they
are closed under a number of standard operations
like mixtures (non-negative weighted sum of sub-
modular functions), truncation and some restricted
compositions.

The above properties will be useful when defin-
ing the submodular objective for obtaining high
quality paraphrases.

4 Methodology

Similar to Prakash et al. (2016); Gupta et al.
(2018); Li et al. (2018), we formulate the task of
paraphrase generation as a sequence-to-sequence
learning problem. Previous SEQ2SEQ based ap-
proaches depend entirely on the standard cross-
entropy loss to produce semantically similar sen-
tences and greedy decoding during generation.
However, this does not guarantee lexical vari-
ety in the generated paraphrases. To incorporate
some form of diversity, most prior approaches rely
solely on top-k beam search sequences. The k-
best list generated by standard beam search are a
poor surrogate for the entire search space (Finkel
et al., 2006). In fact, most of the sentences in
the resulting set are structurally similar, differing
only by punctuations or minor morphological vari-
ations.

While being similar in the encoding scheme,
our work adopts a different approach for the final
decoding. We propose a framework which organi-



<sos>

 Where can I 
get that movie? 

 can 

Where can I get that film?

 I <eos>

How can I get that picture?

 : 3k Candidate Subsequences

 find            film?Where can I thatWhere can I

Where 

How 

can

can

I

I

that

that picture

picture

get

find

 get           movie?Where can IWhere can I that

k- sequences

Synonym (similar embeddings)

Diversity Components Fidelity Components

 where  ,  can  ,  film ,  I  ,   How , 
 find that  ,   that picture ,

  ..
  I get  ,   can I  ,  Where can I 

Rewards unique n-grams

Rewards Structural Coverage

Source Sentence

 Where 

ENCODER DECODER

n-gram overlaps

Figure 1: Overview of DiPS during decoding to generate k paraphrases. At each time step, a set of N sequences
(V (t)) is used to determine k < N sequences (X∗) via submodular maximization . The above figure illustrates the
motivation behind each submodular component. Please see Section 4 for details.

cally combines a sentence encoder with a diversity
inducing decoder.

4.1 Overview

Our approach is built upon SEQ2SEQ framework.
We first feed the tokenized source sentence to the
encoder. The task of the decoder is to take as in-
put the encoded representation and produce the
respective paraphrase. To achieve this, we train
the model using standard cross entropy loss be-
tween the generated sequence and the target para-
phrase. Upon completion of training, instead of
using greedy decoding or standard beam search,
we use a modified decoder where we incorporate a
submodular objective to obtain high quality para-
phrases. Please refer to Figure 1 for an overview
of the proposed method.
During the generation phase, the encoder takes the
source sentence as input and feeds its representa-
tion to the decoder to initiate the decoding process.
At each time-step t, we consider N most proba-
ble subsequences since they are likely to be well-
formed. Based on optimization of our submodular
objective, a subset of size k < N are selected and
sent as input to the next time step t + 1 for fur-
ther generation. The process is repeated until de-
sired output length T or <eos> token, whichever
comes first.

4.2 Monotone Submodular Objectives

We design a parameterized class of submodular
functions tailored towards the task of paraphrase
generation. Let V (t) be the ground set of possible
subsequences at time step t. We aim to determine
a set X ⊆ V (t) that retains certain fidelity as well
as diversity. Hence, we model our submodular ob-
jective function as follows:

X∗ = argmax
X⊆V (t)

F(X) s.t. |X| ≤ k (2)

where k is our budget (desired number of para-
phrases) and F is defined as:

F(X) = λL(X, s) + (1− λ)D(X) (3)

Here s is the source sentence, L(X, s) and D(X)
measure fidelity and diversity, respectively. λ ∈
[0, 1] is the trade-off coefficient. This formulation
clearly brings out the trade-off between the two
key characteristics.

Fidelity
It is imperative to design functions that exploit the
decoder search space to maximize the semantic
similarity between the generated and the source
sentence. To achieve this we build upon a known



class of monotone submodular functions (Stobbe
and Krause, 2010)

f(X) =
∑
i∈U

µiφi(mi(X)) (4)

where U is the set of features to be defined
later, µi ≥ 0 is the feature weight, mi(X) =∑

x∈X mi(x) is non-negative modular function
and φi is a non-negative non-decreasing concave
function. Based on the analysis of concave func-
tions in (Kirchhoff and Bilmes, 2014), we use the
simple square root function as φ (φ(a) =

√
a) in

both of our fidelity objectives defined below.
We consider two complementary notions of sen-

tence similarity namely syntactic and semantic. To
capture syntactic information we define the fol-
lowing function:

L1(X, s) = µ1

√√√√∑
x∈X

N∑
n=1

βn |xn-gram ∩ sn-gram|

(5)
where |xn-gram ∩ sn-gram| represents the number
of overlapping n-grams between the source and
the candidate sequence x for different values of
n ∈ {1, . . . , N}(we use N = 3 ). Since longer
n-gram overlaps are more valuable, we set β > 1.
This function inherently increases the BLEU score
between the source and the generated sentences.

We address the semantic aspect of fidelity by
devising a function based on the word embeddings
of source and generated sentences. We define em-
bedding based similarity between two sentences
as,

S(x, s) = 1

|x|
∑
wi∈x

argmax
wj∈s

ψ(vwi ,vwj ) (6)

where vwi is the word embedding for tokenwi and
ψ(vwi ,vwj ) is the gaussian radial basis function
(rbf)1. For each word in the candidate sequence x,
we find the best matching word in the source sen-
tence using word level similarity. Using the above
mentioned measure for embedding similarity we
use the following submodular function:

L2(X, s) = µ2

√∑
x∈X
S(x, s) (7)

1We find gaussian rbf to work better than other similarity
metrics such as cosine similarity

This function helps increase the semantic homo-
geneity between the source and generated se-
quences. The above defined functions (Equation
5,7) are compositions of non-decreasing concave
functions and modular functions. Thus, staying
in the realm of the class of monotone submodu-
lar functions mentioned in Equation 4, we define
fidelity function L(X, s) = L1(X, s) + L2(X, s)

Diversity
Ensuring high fidelity often comes at the cost of
producing sequences that only slightly differ from
each other. To encourage diversity in the gener-
ation process it is desirable to reward sequences
with higher number of distinct n-grams as com-
pared to others in the ground set V (t). Accord-
ingly, we propose to use the following function:

D1(X) = µ3

N∑
n=1

βn

∣∣∣∣∣ ⋃
x∈X

xn−gram

∣∣∣∣∣ (8)

For β = 1, D1(X) denotes the number of dis-
tinct n-grams present in the set X . Since shorter
n-grams contribute more towards diversity, we set
β < 1, thereby giving more value to shorter n-
grams. It is easy to see that this function is mono-
tone non-decreasing as the number of distinct n-
grams can only increase with the addition of more
sequences. To see thatD1(X) is submodular, con-
sider adding a new sequence to two sets of se-
quences, one a subset of the other. Intuitively, the
increment in the number of distinct n-grams when
adding a new sequence to the smaller set should
be larger than the increment when adding it to the
larger set, as the distinct n-grams in the new se-
quence might have already been covered by the
sequences in the larger set.
Apart from distinct n-gram overlaps, we also wish
to obtain sequence candidates that are not only
diverse, but also cover all major structural vari-
ations. It is reasonable to expect sentences that
are structurally different to have lower degree of
word/phrase alignment as compared to sentences
with minor lexical variations. Edit distance (Lev-
enshtein) is a widely accepted measure to deter-
mine such dissimilarities between two sentences.
To incorporate this notion of diversity, a formula-
tion in terms of edit distance seems like a natural
fit for the problem. To do so, we use the coverage
function which measures the similarity of the can-
didate sequences X with the ground set V (t). The



coverage function is naturally monotone submod-
ular and is defined as:

D2(X) = µ4
∑

xi∈V (t)

∑
xj∈X

R(xi, xj) (9)

where R(xi, xj) is an alignment based similarity
measure between two sequences xi and xj given
by:

R(xi, xj) = 1− EditDistance(xi, xj)

|xi|+ |xj |
(10)

Note that R(xi, xj) will always lie in the range
[0, 1].
Evidently, this method allows flexibility in terms
of controlling diversity and fidelity. Our goal is to
strike a balance between these two to obtain high-
quality generations.

5 Experiments

5.1 Datasets
In this section we outline the datasets used for
evaluating our proposed method. We specify the
actual splits in Table 2. Based on the task, we cat-
egorize them into the following:

1. Intrinsic evaluation: To demonstrate the ef-
ficacy of our method on fidelity and diversity,
we use the standard Quora question pair2

dataset and the Twitter URL paraphrasing
(Lan et al., 2017) dataset.

We train and evaluate the paraphrase gener-
ation model on a subset of Quora question
pair dataset which we refer to as Quora-Div.
This subset comprises only positive examples
(pairs which have been annotated as para-
phrases).

We additionally perform in-domain data aug-
mentation for the task of paraphrase recog-
nition. For that, we augment sentences gen-
erated through different paraphrasing model
as positive samples to the Quora-PR dataset.
Quora-PR is a subset of Quora question pair
dataset which contains positive as well as
negative examples.

2. Data-augmentation: We exhibit the im-
portance of samples generated through our
method on the task of Data-augmentation us-
ing three primary datasets. SNIPS (Coucke

2https://www.kaggle.com/c/quora-question-pairs

et al., 2018), Yahoo-L313 is used for intent-
classification and TREC (Li and Roth, 2002)
is used for question classification. Each
dataset is balanced in terms of the number of
samples per classes.

Dataset Task Train Val. Test Classes

Quora-Div Intrinsic 120K 20K 5K N/A
Twitter Intrinsic 100K 15K 3K N/A

Quora-PR Intrinsic 40K 10K 40K 2

DATA-AUGMENTATION

SNIPS Intent 10k 1k 700 7
Yahoo-L31 Intent 4K 1K 1K 2

TREC Question 1K 200 500 6

Table 2: Dataset Statistics

5.2 Baseline

Several models have sought to increase diversity,
albeit with different goals and techniques. How-
ever, majority of the prior works in this area have
focused on the task of producing diverse responses
in dialog systems (Li et al., 2016; Ritter et al.,
2011) and not paraphrasing. Given the lack of rel-
evant baselines, we compare our model against the
following methods:

1. SBS: Decoder which performs standard beam
search during generation.

2. DBS: An alternative of beam search to incor-
porate diversity. (Vijayakumar et al., 2018)

3. DPP: Decoder based on Determinantal Point
Processes (Kulesza et al., 2012)

4. SSR4: Decoder based on Subset Selection us-
ing Simultaneous Sparse Recovery (Elhami-
far et al., 2016)

We additionally, evaluate against the follow-
ing paraphrase generation models:

5. VAE-SVG: VAE based generative frame-
work for paraphrase generation. (Gupta et al.,
2018)

6. RbM: Deep Reinforcement learning based
paraphrase generation model. (Li et al., 2018)

Note that the first four baselines are trained using
the same SEQ2SEQ network and differ only in the
decoding phase.

3https://webscope.sandbox.yahoo.com/
4Exact formulation of the SSR and DPP can be found in

the supplementary section.

https://www.kaggle.com/c/quora-question-pairs
https://webscope.sandbox.yahoo.com/


Quora-Div Twitter

Model BLEU↑ METEOR↑ TERp↓ BLEU↑ METEOR↑ TERp↓

SBS 33.1 28.2 55.6 51.1 23.5 67.9
DBS (Vijayakumar et al., 2018) 30.9 28.3 57.5 47.1 22.1 69.0
VAE-SVG (Gupta et al., 2018) 33.4 25.6 63.2 46.7 25.2 67.1

RbM (Li et al., 2018) 29.4 29.5 62.5 47.7 29.3 68.7

DPP 30.5 27.9 57.3 44.8 21.4 71.4
SSR 28.7 26.8 58.7 41.3 20.0 74.4

DiPS (Ours) 35.1 29.7 53.2 55.3 30.1 63.5

Table 3: Results on Quora-Div and Twitter dataset. Higher↑ BLEU and METEOR score is better whereas lower↓
TERp score is better. Please see Section 6 for details.

Figure 2: Effect of varying the trade-off coefficient λ in
DiPS on various diversity metrics on the Quora dataset.

5.3 Intrinsic Evaluation

1. Fidelity: To evaluate our method for fidelity
of generated paraphrases, we use three ma-
chine translation metrics which have been
shown to be suitable for paraphrase evalua-
tion task (Wubben et al., 2010): BLEU (Pa-
pineni et al., 2002)(upto bigrams), ME-
TEOR (Banerjee and Lavie, 2005) and TER-
Plus (Snover et al., 2009).

2. Diversity: We report degree of diversity by
calculating the number of distinct n-grams (n
∈ {1, 2, 3, 4}). The value is scaled by the
number of generated tokens to avoid favoring
long sequences.

In addition to fidelity and diversity, we evaluate
the efficacy of our method by using the generated
paraphrases as augmented samples in the task of
paraphrase recognition on the Quora-PR dataset.
We perform experiments with multiple augmenta-
tion settings for the following classifiers:

1. LogReg: Simple Logistic Regression model.
We use a set of hand-crafted features, the de-

tails of which can be found in the supplemen-
tary.

2. SiameseLSTM: Siamese adaptation of
LSTM to measure quality between two
sentences (Mueller and Thyagarajan, 2016)

We also perform ablation testing to highlight the
importance of each submodular component. De-
tails can be found in the supplementary section.

5.4 Data-Augmentation
We evaluate the importance of using high qual-
ity paraphrases in two downstream classification
tasks namely intent-classification and question-
classification. Our original generation model is
trained on Quora-Div question pairs. Since intent-
classification and question-classification contain
questions, this setting seems like a good fit to per-
form transfer learning. We perform experiments
on the following standard classifier models:

1. LogRegDA: Simple logistic regression
model trained using hand-crafted features.
For details, please refer to the supplementary
section.

2. LSTM: Single layered LSTM classification
model.

In addition to SBS and DBS, we use the following
data-augmentation baselines for comparison:

1. SynRep : Simple synonym replacement

2. ContAug: Data-augmentation scheme based
on replacement of words with similar
paradigmatic relations. (Kobayashi, 2018)

5.5 Setup
We train our SEQ2SEQ model with attention (Bah-
danau et al., 2014) for up to 50 epochs using the
adam optimizer (Kingma and Ba, 2014) with ini-
tial learning rate set to 2e-4. During the gener-
ation phase, we follow standard beam search till



Quora-Div Twitter

Model 1-distinct 2-distinct 3-distinct 4-distinct 1-distinct 2-distinct 3-distinct 4-distinct

SBS 12.8 24.8 35.3 46.6 20.0 30.9 38.1 44.6
VAE-SVG (Gupta et al., 2018) 15.8 22.5 27.6 31.8 19.3 28.2 33.3 37.2
DBS (Vijayakumar et al., 2018) 17.9 33.7 44.8 54.9 25.8 40.7 48.2 53.9

DPP 17.1 34.4 49.1 62.6 25.6 41.4 51.1 59.0
SSR 16.6 32.8 47.1 60.7 26.6 43.7 54.0 62.4

DiPS (Ours) 18.1 37.2 52.3 65.3 28.3 46.6 56.7 64.5

Table 4: Results on Quora-Div and Twitter dataset. Higher distinct scores imply better lexical diversity. Please
see Section 6 for details.

LogRegDA LSTM

Model YahooL31 TREC SNIPS YahooL31 TREC SNIPS

NoAug 62.7 82.2 93.4 64.8 94.2 94.7
SBS 63.6 84.6 93.8 65.4 94.4 94.7
DBS 63.3 84.2 94.1 65.6 95.2 96.1

SynRep 63.7 85.2 93.9 65.3 93.6 95.5
ContAug 63.8 86.0 95.3 66.3 95.8 96.4

DiPS(Ours) 64.9 86.6 96.0 66.7 96.4 97.1

Table 5: Accuracy scores of two classification models
on various data-augmentation schemes. Please see Sec-
tion 6 for details

the number of generated tokens is nearly half the
source sequence length (token level) to avoid pos-
sibly erroneous sentences. We then apply submod-
ular maximization stochastically with probability
p at each time step. Since each candidate sub-
sequence is extended by a single token at every
time-step, information added might not necessar-
ily be useful as our submodular components work
on sentence level. This approach is time efficient
and avoids redundant computations.
For each augmentation setting, we randomly se-
lect sentences from the training data and generate
its paraphrases. We then add them in the training
data with the same label as that of the source sen-
tence. We evaluate the performance on different
classification models in terms of accuracy.
Based on the formulation of the objective function,
it should be clear that diversity would attain max-
imum value at (or around) λ = 0 albeit at the cost
of fidelity. This is certainly not a desirable prop-
erty for paraphrasing systems. To address this, we
perform hyperparameter tuning for λ value by ana-
lyzing the trade-off between diversity and fidelity
based on varying λ values. In practice, diversity
metric attains saturation at certain λ range (usually
0.2 - 0.5). This behaviour can be seen in Figure 2.
Corresponding plot for Twitter, the effect of λ on
fidelity and additional details about the hyperpa-
rameters can be found in the supplementary.

Figure 3: Comparison of accuracy scores of two para-
phrase recognition models using different augmenta-
tion schemes (Quora-PR). Both LogReg and Siame-
seLSTM achieve the highest boost in performance
when augmented with samples generated using DiPS

6 Results

Our experiments were geared towards answering
the following primary questions:

Q1. Is DiPS able to generate diverse paraphrases
without compromising on fidelity? (Section
6.1)

Q2. Are paraphrase generated by DiPS useful in
data-augmentation? (Section 6.2)

6.1 Intrinsic Evaluation
We compare our method against recent paraphras-
ing models as well as multiple diversity inducing
schemes. DiPS outperforms these baseline models
in terms of fidelity metrics namely BLEU, ME-
TEOR and TERp. A high METEOR score and a
low TERp score indicate the presence of not only
exact words but also synonyms and semantically
similar phrases. Notably, our model is not only
able to achieve substantial gains over other diver-
sity inducing schemes but is also able to do so



without compromising on fidelity. Diversity and
fidelity scores are reported in Table 4 and Table 3,
respectively.

As described in Section 5.3, we evaluate the
accuracy of paraphrase recognition models when
provided with training data augmented using dif-
ferent schemes. It is reasonable to expect that
high quality paraphrases would tend to yield better
results on in-domain paraphrase recognition task.
We observe that using the paraphrases generated
by DiPS helps in achieving substantial gains in
accuracy over other baseline schemes. Figure 3
showcases the effect of using paraphrases gener-
ated by our method as compared to other compet-
itive paraphrasing methods.

6.2 Data-augmentation

Data Augmentation results for intent and question
classification are shown in Table 5. While, SBS
does not offer much lexical variability, DBS of-
fers high diversity at the cost of fidelity. SynRep
and ContAug are augmentation schemes which are
limited by the amount of structural variations they
can offer. DiPS on the other hand provides gen-
eration having high structural variations without
compromising on fidelity. The boost in accuracy
scores on both the types of classification models is
indicative of the importance of using high quality
paraphrases for data-augmentation.

7 Conclusion

In this paper, we have proposed DiPS, a model
which generates high quality paraphrases by max-
imizing a novel submodular objective function de-
signed specifically for paraphrasing. In contrast
to prior works which focus exclusively either on
fidelity or diversity, a submodular function based
approach offers a large degree of freedom to con-
trol fidelity and diversity. Through extensive ex-
periments on multiple standard datasets, we have
demonstrated the effectiveness of our approach
over numerous baselines. We observe that the di-
verse paraphrases generated are not only interest-
ing and meaning preserving, but are also helpful in
data augmentation. We showcase that using mul-
tiple settings on the task of intent and question
classification. We hope that our approach will be
useful not only for paraphrase generation and data
augmentation, but also for other NLG problems in
conversational agents and text summarization.
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