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Abstract

Word Sense Disambiguation (WSD) is a long-
standing but open problem in Natural Lan-
guage Processing (NLP). WSD corpora are
typically small in size, owing to an expensive
annotation process. Current supervised WSD
methods treat senses as discrete labels and
also resort to predicting the Most-Frequent-
Sense (MFS) for words unseen during train-
ing. This leads to poor performance on rare
and unseen senses. To overcome this chal-
lenge, we propose Extended WSD Incorpo-
rating Sense Embeddings (EWISE), a super-
vised model to perform WSD by predicting
over a continuous sense embedding space as
opposed to a discrete label space. This allows
EWISE to generalize over both seen and un-
seen senses, thus achieving generalized zero-
shot learning. To obtain target sense em-
beddings, EWISE utilizes sense definitions.
EWISE learns a novel sentence encoder for
sense definitions by using WordNet relations
and also ConvE, a recently proposed knowl-
edge graph embedding method. We also com-
pare EWISE against other sentence encoders
pretrained on large corpora to generate defini-
tion embeddings. EWISE achieves new state-
of-the-art WSD performance.

1 Introduction

Word Sense Disambiguation (WSD) is an impor-
tant task in Natural Language Processing (NLP)
(Navigli, 2009). The task is to associate a word
in text to its correct sense, where the set of possi-
ble senses for the word is assumed to be known a
priori. Consider the noun “tie” and the following
examples of its usage (Miller, 1995).

• “he wore a vest and tie”
• “their record was 3 wins, 6 losses and a tie”
∗ Work done as a Research Assistant at Indian Institute
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It is clear that the implied sense of the word “tie” is
very different in the two cases. The word is associ-
ated with “neckwear consisting of a long narrow
piece of material” in the first example, and with
“the finish of a contest in which the winner is un-
decided” in the second. The goal of WSD is to
predict the right sense, given a word and its con-
text.

WSD has been shown to be useful for popu-
lar NLP tasks such as machine translation (Neale
et al., 2016; Pu et al., 2018), information extrac-
tion (Zhong and Ng, 2012; Delli Bovi et al., 2015)
and question answering (Ramakrishnan et al.,
2003). The task of WSD can also be viewed as an
intrinsic evaluation benchmark for the semantics
learned by sentence comprehension models. WSD
remains an open problem despite a long history
of research. In this work, we study the all-words
WSD task, where the goal is to disambiguate all
ambiguous words in a corpus.

Supervised (Zhong and Ng, 2010; Iacobacci
et al., 2016; Melamud et al., 2016) and semi-
supervised approaches (Taghipour and Ng, 2015;
Yuan et al., 2016) to WSD treat the target senses
as discrete labels. Treating senses as discrete la-
bels limits the generalization capability of these
models for senses which occur infrequently in
the training data. Further, for disambiguation of
words not seen during training, these methods fall
back on using a Most-Frequent-Sense (MFS) strat-
egy, obtained from an external resource such as
WordNet (Miller, 1995). To address these con-
cerns, unsupervised knowledge-based (KB) ap-
proaches have been introduced, which rely solely
on lexical resources (e.g., WordNet). KB methods
include approaches based on context-definition
overlap (Lesk, 1986; Basile et al., 2014), or on the
structural properties of the lexical resource (Moro
et al., 2014; Weissenborn et al., 2015; Chaplot
et al., 2015; Chaplot and Salakhutdinov, 2018;
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Figure 1: Overview of WSD in EWISE: A sequence of input tokens is encoded into context-aware embeddings
using a BiLSTM and a self-attention layer (⊕ indicates concatenation). The context-aware embeddings are then
projected on to the space of sense embeddings. The score for each sense in the sense inventory is obtained using a
dot product (indicated by �) of the sense embedding with the projected word embedding. Please see Section 4.2
for details on the context encoding and training of the context encoder. The sense embedding for each sense in
the inventory is generated using a BiLSTM-Max definition encoder. The encoder is learnt using the training signal
present in WordNet Graph. An example signal with hypernym relation is depicted. Please see Section 4.3 for
details on learning sense embeddings.

Tripodi and Pelillo, 2017).
While knowledge-based approaches offer a way

to disambiguate rare and unseen words into po-
tentially rare senses, supervised methods consis-
tently outperform these methods in the general set-
ting where inference is to be carried over both fre-
quently occurring and rare words. Recently, Ra-
ganato et al. (2017b) posed WSD as a neural se-
quence labeling task, further improving the state-
of-the-art. Yet, owing to an expensive annota-
tion process (Lopez de Lacalle and Agirre, 2015),
there is a scarcity of sense-annotated data thereby
limiting the generalization ability of supervised
methods. While there has been recent interest
in incorporating definitions (glosses) to overcome
the supervision bottleneck for WSD (Luo et al.,
2018b,a), these methods are still limited due to
their treatment of senses as discrete labels.

Our hypothesis is that supervised methods can
leverage lexical resources to improve on WSD
for both observed and unobserved words and
senses. We propose Extended WSD Incorpo-
rating Sense Embeddings (EWISE). Instead of
learning a model to choose between discrete la-
bels, EWISE learns a continuous space of sense
embeddings as target. This enables generalized
zero-shot learning, i.e., the ability to recognize in-
stances of seen as well as unseen senses. EWISE
utilizes sense definitions and additional informa-
tion from lexical resources. We believe that nat-
ural language information manually encoded into

definitions contains a rich source of information
for representation learning of senses.

To obtain definition embeddings, we propose
a novel learning framework which leverages re-
cently successful Knowledge Graph (KG) embed-
ding methods (Bordes et al., 2013; Dettmers et al.,
2018). We also compare against sentence en-
coders pretrained on large corpora.

In summary, we make the following contribu-
tions in this work.

• We propose EWISE, a principled frame-
work to learn from a combination of sense-
annotated data, dictionary definitions and
lexical knowledge bases.

• We propose the use of sense embeddings in-
stead of discrete labels as the targets for su-
pervised WSD, enabling generalized zero-
shot learning.

• Through extensive evaluation, we demon-
strate the effectiveness of EWISE over state-
of-the-art baselines.

EWISE source code is available at https://
github.com/malllabiisc/EWISE

2 Related Work

Classical approaches to supervised WSD relied
on extracting potentially relevant features and
learning classifiers independently for each word

https://github.com/malllabiisc/EWISE
https://github.com/malllabiisc/EWISE


(Zhong and Ng, 2010). Extensions to use dis-
tributional word representations have been pro-
posed (Iacobacci et al., 2016). Semi-supervised
approaches learn context representations from un-
labeled data, followed by a nearest neighbour clas-
sification (Melamud et al., 2016) or label prop-
agation (Yuan et al., 2016). Recently, Raganato
et al. (2017b) introduced neural sequence models
for joint disambiguation of words in a sentence.
All of these methods rely on sense-annotated data
and, optionally, additional unlabeled corpora.

Lexical resources provide an important source
of knowledge about words and their meanings.
Recent work has shown that neural networks can
extract semantic information from dictionary defi-
nitions (Bahdanau et al., 2017; Bosc and Vincent,
2018). In this work, we use dictionary definitions
to get representations of word meanings.

Dictionary definitions have been used for WSD,
motivated by the classical method of Lesk (Lesk,
1986). The original as well as subsequent modi-
fications of the algorithm (Banerjee and Pedersen,
2003), including using word embeddings (Basile
et al., 2014), operate on the hypothesis that the
definition of the correct sense has a high overlap
with the context in which a word is used. These
methods tend to rely on heuristics based on in-
sights about natural language text and their defini-
tions. More recently, gloss (definition)-augmented
neural approaches have been proposed which in-
tegrate a module to score definition-context simi-
larity (Luo et al., 2018b,a), and achieve state-of-
the-art results. We differ from these works in that
we use the embeddings of definitions as the target
space of a neural model, while learning in a super-
vised setup. Also, we don’t rely on any overlap
heuristics, and use a single definition for a given
sense as provided by WordNet.

One approach for obtaining continuous repre-
sentations for definitions is to use Universal Sen-
tence Representations, which have been explored
to allow transfer learning from large unlabeled as
well as labeled data (Conneau et al., 2017; Cer
et al., 2018). There has also been interest in learn-
ing deep contextualized word representations (Pe-
ters et al., 2018; Devlin et al., 2019). In this work,
we evaluate definition embeddings obtained using
these methods.

Structural Knowledge available in lexical re-
sources such as WordNet has motivated sev-
eral unsupervised knowledge-based approaches

for WSD. Graph based techniques have been used
to match words to the most relevant sense (Nav-
igli and Lapata, 2010; Sinha and Mihalcea, 2007;
Agirre et al., 2014; Moro et al., 2014; Chaplot and
Salakhutdinov, 2018).

Our work differs from these methods in that we
use structural knowledge to learn better represen-
tations of definitions, which are then used as tar-
gets for the WSD model. To learn a meaning-
ful encoder for definitions we rely on knowledge
graph embedding methods, where we represent an
entity by the encoding of its definition. TransE
(Bordes et al., 2013) models relations between en-
tities as translations operating on the embeddings
of the corresponding entities. ConvE (Dettmers
et al., 2018), a more recent method, utilizes a
multi-layer convolutional network, allowing it to
learn more expressive features.

Predicting in an embedding space is key to
our methods, allowing generalized zero shot learn-
ing capability, as well as incorporating definitions
and structural knowledge. The idea has been ex-
plored in the context of zero-shot learning (Xian
et al., 2018). Tying the input and output embed-
dings of language models (Press and Wolf, 2017)
resembles our approach.

3 Background

In this work, we propose to use the training signal
present in WordNet relations to learn encoders for
definitions (Section 4.3.2). To learn from WordNet
relations, we employ recently popular Knowledge
Graph (KG) Embedding learning methods. In Sec-
tion 3.1, we briefly introduce the framework for
KG Embedding learning, and present the specific
formulations for TransE and ConvE.

3.1 Knowledge Graph Embeddings

Knowledge Graphs, a set of relations defined over
a set of entities, provide an important field of re-
search for representation learning. Methods for
learning representations for both entities and rela-
tions have been explored (Wang et al., 2017) with
an aim to represent graphical knowledge. Of par-
ticular significance is the task of link prediction,
i.e., predicting missing links (edges) in the graph.

A Knowledge Graph is typically comprised of a
set K of N triples (h, l, t), where head h and tail t
are entities, and l denotes a relation.

TransE defines a scoring function for a triple
(h, l, t), as the dissimilarity between the head em-



bedding, translated by the relation embedding, and
the tail embedding:

dh,l,t = ||eh + el − et||22, (1)

where, eh, et and el are parameters to be learnt.
A margin based criterion, with margin γ, can

then be formulated as:

LT =
∑

(h,l,t)∈K

∑
(h′,l,t′)∈K′

[γ + dh,l,t − dh′,l,t′ ]+,

(2)
where K ′ is a set of corrupted triples (Bordes
et al., 2013), and [x]+ refers to the positive part
of x.

ConvE formulates the scoring function
ψl(eh, et) for a triple (h, l, t) as:

ψl(eh, et) = f(vec(f([eh; el] ∗ w))W )et, (3)

where eh and et are entity parameters, el is a re-
lation parameter, x denotes a 2D reshaping of x,
w denotes the filters for 2D convolution, vec(x)
denotes the vectorization of x, W represents a lin-
ear transformation, and f denotes a rectified linear
unit.

For a given head entity h, the score ψl(eh, et)
is computed with each entity in the graph as a tail.
Probability estimates for the validity of a triple are
obtained by applying a logistic sigmoid function
to the scores:

p = σ(ψl(eh, et)). (4)

The model is then trained using a binary cross en-
tropy loss:

LC = − 1

N

∑
i

(ti.log(pi)+ (1− ti).log(1− pi)),

(5)
where ti is 1 when (h, l, t) ∈ K and 0, otherwise.

4 EWISE

EWISE is a general WSD framework for learning
from sense-annotated data, dictionary definitions
and lexical knowledge bases (Figure 1).

EWISE addresses a key issue with existing su-
pervised WSD systems. Existing systems use dis-
crete sense labels as targets for WSD. This limits
the generalization capability to only the set of an-
notated words in the corpus, with reliable learning
only for the word-senses which occur with high
relative frequency. In this work, we propose using

continuous space embeddings of senses as targets
for WSD, to overcome the aforementioned super-
vision bottleneck.

To ensure generalized zero-shot learning capa-
bility, it is important that the target sense embed-
dings be obtained independent of the WSD task
learning. We use definitions of senses available
in WordNet to obtain sense embeddings. Using
Dictionary Definitions to obtain the representation
for a sense enables us to benefit from the seman-
tic overlap between definitions of different senses,
while also providing a natural way to handle un-
seen senses.

In Section 4.1, we state the task of WSD
formally. We then describe the components of
EWISE in detail. Here, we briefly discuss the
components:

• Attentive Context Encoder: EWISE uses
a Bi-directional LSTM (BiLSTM) encoder
to convert the sequence of tokens in the in-
put sentence into context-aware embeddings.
Self-attention is used to enhance the con-
text for disambiguating the current word, fol-
lowed by a projection layer to produce sense
embeddings for each input token. The archi-
tecture is detailed in Section 4.2.

• Definition Encoder: In EWISE, definition
embeddings are learnt independent of the
WSD task. In Section 4.3.1, we detail the us-
age of pretrained sentence encoders as base-
line models for encoding definitions. In Sec-
tion 4.3.2, we detail our proposed method to
learn an encoder for definitions using struc-
tural knowledge in WordNet.

4.1 The WSD Task

WSD is a classification problem for a word w
(e.g., bank) in a context c, with class labels being
the word senses (e.g., financial institution).

We consider the all-words WSD task, where all
content words - nouns, verbs, adjectives, adverbs -
need to be disambiguated (Raganato et al., 2017a).
The set of all possible senses for a word is given
by a predefined sense inventory, such as WordNet.
In this work, we use sense candidates as provided
in the evaluation framework of (Raganato et al.,
2017a) which has been created using WordNet.

More precisely, given a variable-length se-
quence of words x =< x1 . . . xT >, we need
to predict a sequence of word senses y =<



y1 . . . yT >. Output word sense yi comes from
a predefined sense inventory S. During inference,
the set of candidate senses Sw for input word w is
assumed to be known a priori.

4.2 Attentive Context Encoder
In this section, we detail how EWISE encodes the
context of a word to be disambiguated using BiL-
STMs (Hochreiter and Schmidhuber, 1997). BiL-
STMs have been shown to be successful for gener-
ating effective context dependent representations
for words. Following Raganato et al. (2017b), we
use a BiLSTM with a self-attention layer to ob-
tain sense-aware context specific representations
of words. The sense embedding for a word is ob-
tained through a projection of the context embed-
ding. We then train the model with independently
trained sense embeddings (Section 4.3) as target
embeddings.

Our model architecture is shown in Figure 1.
The model processes a sequence of tokens xi, i ∈
[T ] in a given sentence input by first representing
each token with a real-valued vector representa-
tion, ei, via an embedding matrix We ∈ R|V |∗d,
where V is the vocabulary size and d is the size
of the embeddings. The vector representations are
then input to a 2 layer bidirectional LSTM en-
coder. Each word is represented by concatenating
the forward hif and backward hib hidden state vec-
tors of the second LSTM layer.

ui = [hif , h
i
b] (6)

Following Vaswani et al. (2017), we use a scaled
dot-product attention mechanism to get context in-
formation at each timestep t. Attention queries,
keys and values are obtained using projection ma-
trices Wq, Wk and Wv respectively, while the size
of the projected key (dk) is used to scale the dot-
product between queries and values.

eit = dot(Wqu
i,Wku

t); t ∈ [1, T ]

ai = softmax(
ei√
dk

)

ci =
∑

t∈[1,T ]

ait.Wvu
t

ri = [ui, ci]

(7)

A projection layer (fully connected linear layer)
maps this context-aware word representation ri to
vi in the space of sense embeddings.

vi =Wlr
i (8)

During training, we multiply this with the sense
embeddings of all senses in the inventory, to ob-
tain a score for each output sense. A bias term is
added to this score, where the bias is obtained as
the dot product between the sense embedding and
a learned parameter b. A softmax layer then gen-
erates probability estimates for each output sense.

p̂ij = softmax(dot(vi, ρj) + dot(b, ρj));

ρj ∈ S
(9)

The cross entropy loss for annotated word xi is
given by:

Li
wsd = −

∑
j

(zij log(p̂
i
j)), (10)

where zi is the one-hot representation of the target
sense yi in the sense inventory S. The network
parameters are learnt by minimizing the average
cross entropy loss over all annotated words in a
batch.

During inference, for each word xi, we select
the candidate sense with the highest score.

ŷi = argmaxj(dot(v
i, ρj) + dot(b, ρj));

ρj ∈ Sxi

(11)

4.3 Definition Encoder
In this section, we detail how target sense embed-
dings are obtained in EWISE.

4.3.1 Pretrained Sentence Encoders
We use pretrained sentence representation mod-
els, InferSent (Conneau et al., 2017) and USE (Cer
et al., 2018) to encode definitions, producing sense
embeddings of sizes 4096 and 512, respectively.

We also experiment with deep context encoders,
ELMO (Peters et al., 2018) and BERT (Devlin
et al., 2019) to obtain embeddings for definitions.
In each case, we encode a definition using the
available pretrained models, producing a context
embedding for each word in the definition. A fixed
length representation is then obtained by averag-
ing over the context embeddings of the words in
the definition, from the final layer. This produces
sense embeddings of sizes 1024 with both ELMO
and BERT.

4.3.2 Knowledge Graph Embedding
WordNet contains a knowledge graph, where the
entities of the graph are senses (synsets), and re-



Dev Test Datasets Concatenation of All Test Datasets
SE7 SE2 SE3 SE13 SE15 Nouns Verbs Adj. Adv. ALL

WordNet S1 55.2 66.8 66.2 63.0 67.8 67.6 50.3 74.3 80.9 65.2
Non-neural baselines
MFS (Using training data) 54.5 65.6 66.0 63.8 67.1 67.7 49.8 73.1 80.5 65.5
IMS+emb (2016)ˆ 62.6 72.2 70.4 65.9 71.5 71.9 56.6 75.9 84.7 70.1
Leskext+emb (2014)* 56.7 63.0 63.7 66.2 64.6 70.0 51.1 51.7 80.6 64.2
UKBgloss+w2w (2014)* 42.9 63.5 55.4 62.9 63.3 64.9 41.4 69.5 69.7 61.1
Babelfy (2014) 51.6 67.0 63.5 66.4 70.3 68.9 50.7 73.2 79.8 66.4
Context2Vec (2016) ˆ 61.3 71.8 69.1 65.6 71.9 71.2 57.4 75.2 82.7 69.6
WSD-TM (2018) 55.6 69.0 66.9 65.3 69.6 69.7 51.2 76.0 80.9 66.9
Neural baselines
BiLSTM+att+LEX (2017b) 63.7 72.0 69.4 66.4 70.8 71.6 57.1 75.6 83.2 69.7
BiLSTM+att+LEX+POS (2017b) 64.8 72.0 69.1 66.9 71.5 71.5 57.5 75.0 83.8 69.9
GASext (Linear) (2018b)* – 72.4 70.1 67.1 72.1 71.9 58.1 76.4 84.7 70.4
GASext (Concatenation) (2018b)* – 72.2 70.5 67.2 72.6 72.2 57.7 76.6 85.0 70.6
CANs (2018a)* – 72.2 70.2 69.1 72.2 73.5 56.5 76.6 83.3 70.9
HCAN (2018a)* – 72.8 70.3 68.5 72.8 72.7 58.2 77.4 84.1 71.1
EWISE (ConvE)* 67.3 73.8 71.1 69.4 74.5 74.0 60.2 78.0 82.1 71.8

Table 1: Comparison of F1-scores for fine-grained all-words WSD on Senseval and SemEval datasets in the frame-
work of Raganato et al. (2017a). The F1 scores on different POS tags (Nouns, Verbs, Adjectives, and Adverbs)
are also reported. WordNet S1 and MFS provide most-frequent-sense baselines. * represents models which access
definitions, while ˆ indicates models which don’t access any external knowledge. EWISE (ConvE) is the proposed
approach, where the ConvE method was used to generate the definition embeddings. Both the non-neural and neu-
ral supervised baselines presented here rely on a back-off mechanism, using WordNet S1 for words unseen during
training. For each dataset, the highest score among existing systems with a statistically significant difference (un-
paired t-test, p < 0.05) from EWISE is underlined. EWISE, which is capable of generalizing to unseen words and
senses, doesn’t use any back-off. EWISE consistently outperforms all supervised and knowledge-based systems,
except for adverbs. Please see Section 6.1 for details. While the overall performance of EWISE is comparable to
the neural baselines in terms of statistical significance, the value of EWISE lies in its ability to handle unseen and
rare words and senses (See Section 6.3). Further, among the models compared, EWISE is the only system which is
statistically significant (unpaired t-test, p < 0.01) with respect to the WordNet S1 baseline across all test datasets.

lations are defined over these senses. Example re-
lations include hypernym and part of. With each
entity (sense), there is an associated text definition.

We propose to use WordNet relations as the
training signal for learning definition encoders.
The training set K is comprised of triples (h, l, t),
where head h and tail t are senses, and l is a re-
lation. Also, gx denotes the definition of entity x,
as provided by WordNet. The dataset contains 18
WordNet relations (Bordes et al., 2013).

The goal is to learn a sentence encoder for def-
initions and we select the BiLSTM-Max encoder
architecture due to its recent success in sentence
representation (Conneau et al., 2017). The words
in the definition are encoded by a 2-layer BiL-
STM to obtain context-aware embeddings for each
word. A fixed length representation is then ob-
tained by Max Pooling, i.e., selecting the maxi-
mum over each dimension. We denote this defini-
tion encoder by q(.).

TransE We modify the dissimilarity measure in
TransE (Equation 1) to represent both head (h) and

tail (t) entities by an encoding of their definitions.

dh,l,t = −cosine(q(h) + el, q(t)) (12)

The parameters of the BiLSTM model q and the
relation embeddings el are then learnt by minimiz-
ing the loss function in Equation 2.

ConvE We modify the scoring function of
ConvE (Equation 3), to represent a head entity by
the encoding of its definition.

ψl(eh, et) = f(vec(f([q(h); el] ∗ w))W )et (13)

Note that we represent only the head entity with
an encoding of its definition while the tail entity
t is still represented by parameter et. This helps
restrict the size of the computation graph.

The parameters of the model q, el and et are
then learnt by minimizing the binary cross-entropy
loss function in Equation 5.

5 Experimental Setup

In this section, we provide details on the training
and evaluation datasets. The training details are



captured in Appendix A.

5.1 Data
We use the English all-words WSD benchmarks
for evaluating our models:

1. SensEval-2 (Palmer et al., 2001)

2. SensEval-3 (Snyder and Palmer, 2004)

3. SemEval-2013 (Navigli et al., 2013)

4. SemEval-2015 (Moro and Navigli, 2015)

5. ALL (Raganato et al., 2017a)

Following (Raganato et al., 2017b), we use
SemEval-2007 (Pradhan et al., 2007) as our de-
velopment set. We use SemCor 3.0 (Miller et al.,
1993) as our training set. To enable a fair com-
parison, we used the dataset versions provided by
(Raganato et al., 2017a). For our experiments, we
used the definitions available in WordNet 3.0.

6 Evaluation

In this section, we aim to answer the following
questions:

• Q1: How does EWISE compare to state-
of-the-art methods on standardized test sets?
(Section 6.1)

• Q2: What is the effect of ablating key com-
ponents from EWISE? (Section 6.2)

• Q3: Does EWISE generalize to rare and un-
seen words (Section 6.3.1) and senses (Sec-
tion 6.3.2)?

• Q4: Can EWISE learn with less annotated
data? (Section 6.4)

6.1 Overall Results
In this section, we report the performance of
EWISE on the fine-grained all-words WSD task,
using the standardized benchmarks and evalua-
tion methodology introduced in Raganato et al.
(2017a). In Table 1, we report the F1 scores for
EWISE, and compare against the best reported su-
pervised and knowledge-based methods.

WordNet S1 is a strong baseline obtained by us-
ing the most frequent sense of a word as listed
in WordNet. MFS is a most-frequent-sense base-
line obtained through the sense frequencies in the
training corpus.

Context2Vec (Melamud et al., 2016), an unsu-
pervised model for learning generic context em-
beddings, enables a strong baseline for supervised
WSD while using a simplistic approach (nearest-
neighbour algorithm).

IMS+emb (Iacobacci et al., 2016) takes the clas-
sical approach of extracting relevant features and
learning an SVM for WSD. Leskext+emb (Basile
et al., 2014) relies on definition-context overlap
heuristics. UKBglossw2w (Agirre et al., 2014), Ba-
belfy (Moro et al., 2014) and WSD-TM (Chaplot
and Salakhutdinov, 2018) provide unsupervised
knowledge-based methods. Among neural base-
lines, we compare against the neural sequence
modeling approach in BiLSTM+att+LEX(+POS)
(Raganato et al., 2017b). GAS (Luo et al.,
2018b) and HCAN (Luo et al., 2018a) are re-
cent neural models which exploit sense defini-
tions. EWISE consistently outperforms all super-
vised and knowledge-based methods, improving
upon the state-of-the-art by 0.7 point in F1 on the
ALL dataset. Further, EWISE improves WSD per-
formance across all POS tags (Table 1) except ad-
verbs.

Back-off : Traditional supervised approaches
can’t handle unseen words. WordNet S1 is used as
a back-off strategy for words unseen during train-
ing. EWISE is capable of generalizing to unseen
words and senses and doesn’t use any back-off.

6.2 Ablation Study for EWISE

Ablation on ALL dataset
EWISE (ConvE) 71.8
- w/o Sense embeddings (with back-off) 69.3
- w/o Sense embeddings (w/o back-off) 61.8
WordNet S1 65.2

Table 2: Ablation study for EWISE (ConvE) on the
ALL dataset. Removal of sense embeddings (rows 2
and 3) results in significant performance degradation,
establishing their importance in WSD. Please see Sec-
tion 6.2 for details.

We provide an ablation study of EWISE on the
ALL dataset in Table 2. To investigate the ef-
fect of using definition embeddings in EWISE, we
trained a BiLSTM model without any externally
obtained sense embeddings. This model can make
predictions only on words seen during training,
and is evaluated with or without a back-off strat-
egy (WordNet S1) for unseen words (row 2 and 3).
The results demonstrate that incorporating sense



embeddings is key to EWISE’s performance. Fur-
ther, the generalization capability of EWISE is il-
lustrated by the improvement in F1 in the absence
of a back-off strategy (10.0 points).

Test Datasets
SE2 SE3 SE13 SE15 ALL

USE 73.0 70.6 70.9 73.7 71.5
InferSent 72.7 70.2 69.9 73.7 71.2
ELMO 72.5 70.7 68.6 72.6 70.8
BERT 73.0 69.7 70.0 73.7 71.2
DeConf 71.3 67.0 67.9 73.0 69.3
TransE 72.8 71.4 70.5 73.1 71.6
ConvE 73.8 71.1 69.4 74.5 71.8

Table 3: Comparison of F1 scores with different sense
embeddings as targets for EWISE. While pre-trained
embedding methods (USE, InferSent, ELMO, BERT)
and DeConf provide impressive results, the KG embed-
ding methods (TransE and ConvE) perform competi-
tively or better by learning to encode definitions using
WordNet alone. Please see Section 6.2 for details.

Next, we investigate the impact of the choice of
sense embeddings used as the target for EWISE
(Table 3), on the ALL dataset. We compare def-
inition embeddings learnt using structural knowl-
edge (TransE, ConvE; See Section 4.3.2) against
definition embeddings obtained from pre-trained
sentence and context encoders (USE, InferSent,
ELMO, BERT; See Section 4.3.1). We also com-
pared with off-the-shelf sense embeddings (De-
Conf) (Pilehvar and Collier, 2016), where def-
initions are not used. The results justify the
choice of learning definition embeddings to rep-
resent senses.

6.3 Detailed Results

We provide detailed results for EWISE on the
ALL dataset, compared against BiLSTM-A (BiL-
STM+attention) baseline which is trained to pre-
dict in the discrete label space (Raganato et al.,
2017b). We also compare against WordNet S1
and knowledge-based methods, Leskext+emb and
Babelfy, available in the evaluation framework of
Raganato et al. (2017a).

6.3.1 WSD on Rare Words
In this section, we investigate a key claim of
EWISE - the ability to disambiguate unseen and
rare words. We evaluate WSD models based on
different frequencies of annotated words in the
training set in Figure 2. EWISE outperforms the
supervised as well as knowledge-based baselines
for rare as well as frequent words. The bar plot
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Figure 2: Comparison of F1 scores for different fre-
quencies of annotated words in the train set. EWISE
provides significant gains for unseen, rare as well as
frequently observed annotated words. Please see Sec-
tion 6.3.1 for details.

on the left (frequency=0) indicates the zero-shot
learning capability of EWISE. While traditional
supervised systems are limited to WordNet S1 per-
formance (by using it as back-off for words with
no annotations in the training set), EWISE pro-
vides a significant boost over both WordNet S1 as
well as knowledge-based systems.

6.3.2 WSD on Rare Senses

MFS LFS
WordNet S1 100.0 0.0
Lesk(ext)+emb 92.7 9.4
Babelfy 93.9 12.2
BiLSTM-A 93.4 22.9
EWISE 93.5 31.2

Table 4: Comparison of F1 scores on different sense
frequencies. EWISE outperforms baselines on infre-
quent senses, without sacrificing the performance on
the most frequent sense examples. Please see Sec-
tion 6.3.2 for details.

To investigate the ability to generalize to rare
senses, we partition the ALL test set into two parts
- the set of instances labeled with the most fre-
quent sense of the corresponding word (MFS), and
the set of remaining instances (LFS: Least Fre-
quent Senses). Postma et al. (2016) note that ex-
isting methods learn well on the MFS set, while
doing poorly (∼ 20%) on the LFS set.

In Table 4, we evaluate the performance of
EWISE and baseline models on MFS and LFS
sets. We note that EWISE provides significant
gains over a neural baseline (BiLSTM-A), as well
as knowledge based methods on the LFS set, while
maintaining high accuracy on the MFS set. The
gain obtained on the LFS set is consistent with our
hypothesis that predicting over sense embeddings
enables generalization to rare senses.



6.4 Size of Training Data

Size of
training data

F1
Without
back-off

With
back-off

WordNet S1 65.2

EWISE
20% 66.8 67.0
50% 70.1 69.2

100% 71.8 71.0

Table 5: Performance of EWISE with varying sizes of
training data. With only 20% of training data, EWISE
is able to outperform the most-frequent-sense baseline
of WordNet S1. Please see Section 6.4 for details.

In this section, we investigate if EWISE can
learn efficiently from less training data, given its
increased supervision bandwidth (sense embed-
dings instead of sense labels). In Table 5, we
report the performance of EWISE on the ALL
dataset with varying sizes of the training data.
We note that with only 50% of training data,
EWISE already competes with several supervised
approaches (Table 1), while with just 20% of train-
ing data, EWISE is able to outperform the strong
WordNet S1 baseline. For reference, we also
present the performance of EWISE when we use
back-off (WordNet S1) for words unseen during
training.

7 Conclusion and Future Work

We have introduced EWISE, a general framework
for learning WSD from a combination of sense-
annotated data, dictionary definitions and Lexical
Knowledge Bases. EWISE uses sense embeddings
as targets instead of discrete sense labels. This
helps the model gain zero-shot learning capabil-
ities, demonstrated through ablation and detailed
analysis. EWISE improves state-of-the-art results
on standardized benchmarks for WSD. We are re-
leasing EWISE code to promote reproducible re-
search.

This paper should serve as a starting point
to better investigate WSD on out-of-vocabulary
words. Our modular architecture opens up vari-
ous avenues for improvements in few-shot learn-
ing for WSD, viz., context encoder, definition en-
coder, and leveraging structural knowledge. An-
other potential future work would be to explore
other ways of providing rich supervision from tex-
tual descriptions as targets.
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A Training Details

For both context and definition encoding, we used
BiLSTMs of hidden size 2048. The input embed-
dings for the BiLSTM was initialized with GloVe1

(Pennington et al., 2014) embeddings and kept
fixed during training. We used the Adam opti-
mizer for learning all our models.

WSD: We used an initial learning rate of
0.0001, a batch size of 32, and trained our mod-
els for a maximum of 200 epochs. For each run,
we select the model with the best F1 score on the
development set (SemEval-2007).

During training, we consider the entire sense
inventory (the global pool of candidate senses of
all words) for learning. During inference, for fair

1http://nlp.stanford.edu/data/glove.
840B.300d.zip

comparison with baselines, we disambiguate be-
tween candidates senses of a word as provided in
WordNet.

TransE: We use training data from Bordes et al.
(2013)2. We used an initial learning rate of 0.001,
a batch size of 32, and trained for a maximum of
1000 epochs. The embedding size was fixed to
4096.

ConvE: We use the learning framework of
Dettmers et al. (2018), and learned the model with
an inital learning rate of 0.0001, a batch size of
128, label smoothing of 0.1, and a maximum of
500 epochs. We found that the best results were
obtained by pretraining the entity and relation em-
bedding using Equation 3 and then training the
definition encoder using Equation 13 while allow-
ing all parameters to train. The embedding size
was fixed to 4096.

2https://everest.hds.utc.fr/lib/exe/
fetch.php?media=en:wordnet-mlj12.tar.gz
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