Knowledge Extraction and Inference from Text: Shallow, Deep, and Everything in Between (Tutorial at SIGKDD 2018)

> Partha Talukdar IISc Bangalore and Kenome ppt@iisc.ac.in

Tutorial homepage: <u>https://goo.gl/vRkwxZ</u>

August 19, 2018

Many slides reused from CIKM 2017 tutorial with Soumen Chakrabarti (IIT Bombay)

Acknowledgment

- Soumen Chakrabarti (IIT Bombay)
- Tom Mitchell (CMU)
- Masuam (IIT Delhi)

Acknowledgment

- Soumen Chakrabarti (IIT Bombay)
- Tom Mitchell (CMU)
- Masuam (IIT Delhi)
- My PhD students at MALL Lab, IISc Bangalore

Chandrahas Dewangan

Sharmistha Jat

Madhav Nimishakavi

Shikhar Vashishth

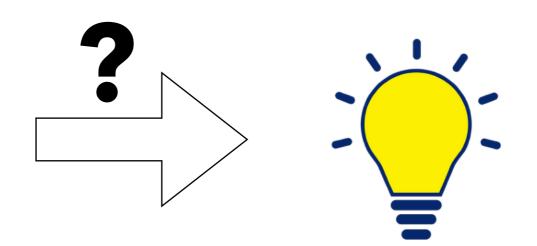
300 million new websites added in 2011 alone (a 117% growth)

300 million new websites added in 2011 alone (a 117% growth)

500 million Tweets per day (circa Oct 2012) Time to read for one person: 31years

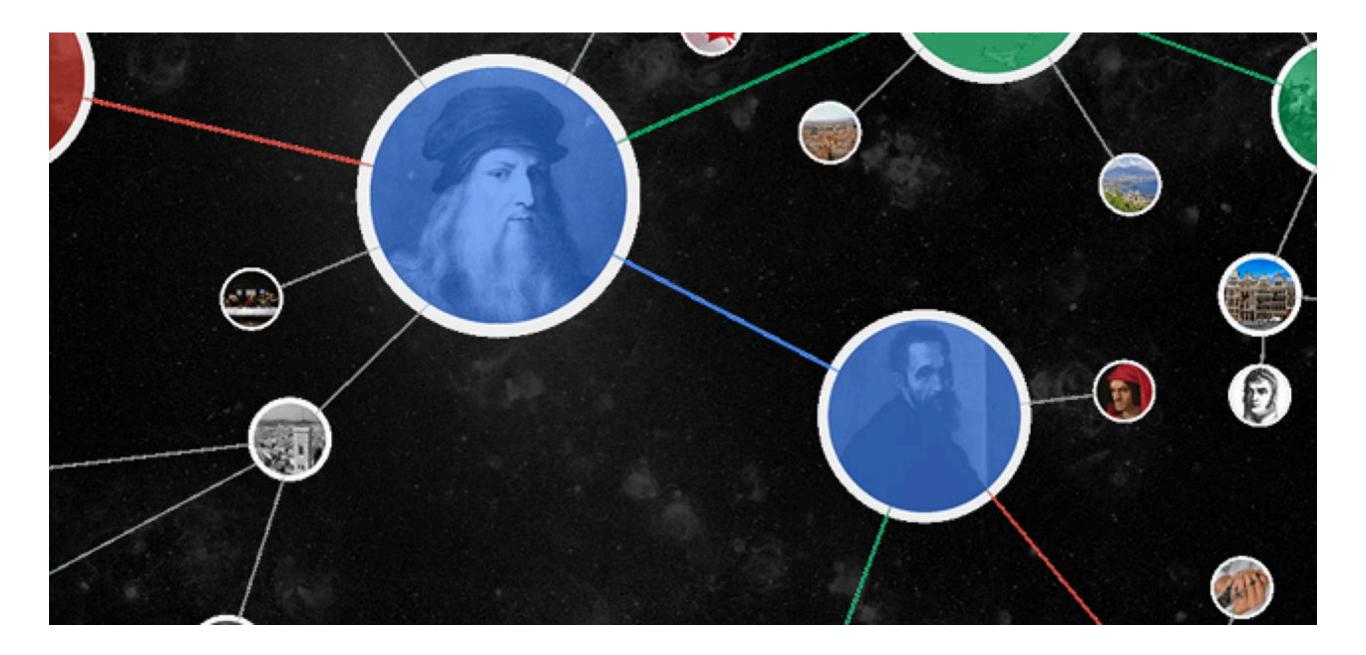
300 million new websites added in 2011 alone (a 117% growth)

500 million Tweets per day (circa Oct 2012) Time to read for one person: 31years



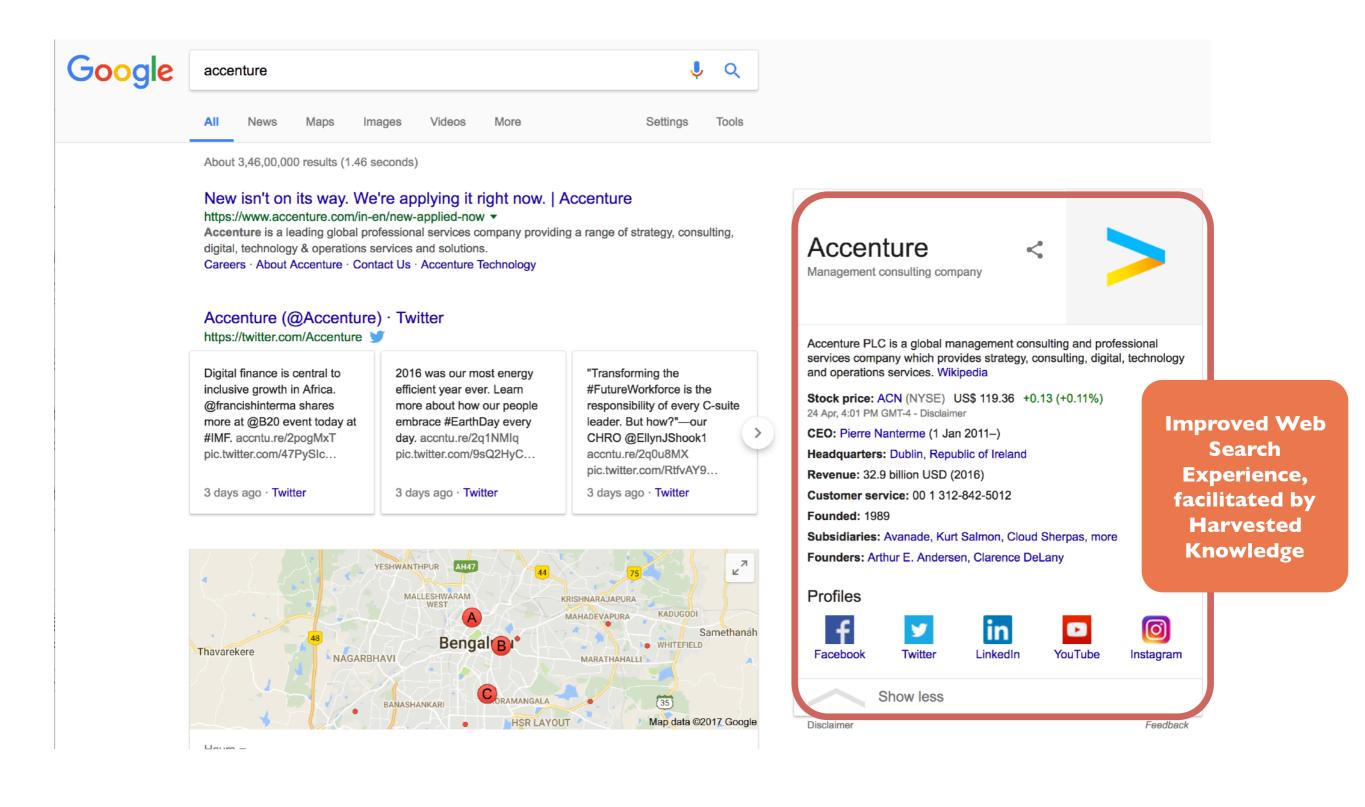
Sources: http://royal.pingdom.com/2012/01/17/internet-2011-in-numbers/, http://blog.twitter.com/2011/06/200-million-tweets-per-day.html, https://commons.wikimedia.org/, https:// pixabay.com/

Knowledge Graph: Things, not Strings



Use case: Google Knowledge Graph

Use case: Google Knowledge Graph



5

Use case: GeoDeepDive and PaleoDeepDive

DeepDive builds KG out of scientific publications in Geology and Paleontology domains

Knowledge Graphs can provide a shared context

Knowledge Graphs can provide a shared context

Google Knowledge Graph

Facebook Entity Graph

Microsoft Satori

LinkedIn Graph

Tutorial Focus

Weakly-supervised methods for Knowledge Graph (KG) construction

For additional topics on inference over KG, typing, entity linking, etc., please see SIGIR 2018 tutorial slides at <u>https://goo.gl/vRkwxZ</u>

Outline

13:00-13:15 Overview and motivation

- 13:15-13:45 Case study: NELL
- 13:45-14:00 Bootstrapped Entity Extraction
- 14:00-15:00 Open Relation Extraction & Canonicalization
- 15:00-15:30 Coffee Break
- 15:30-16:15 Distantly-supervised Neural Relation Extraction
- 16:15-16:45 Knowledge Graph Embeddings
- 16:45-17:00 Conclusion & QA

Outline

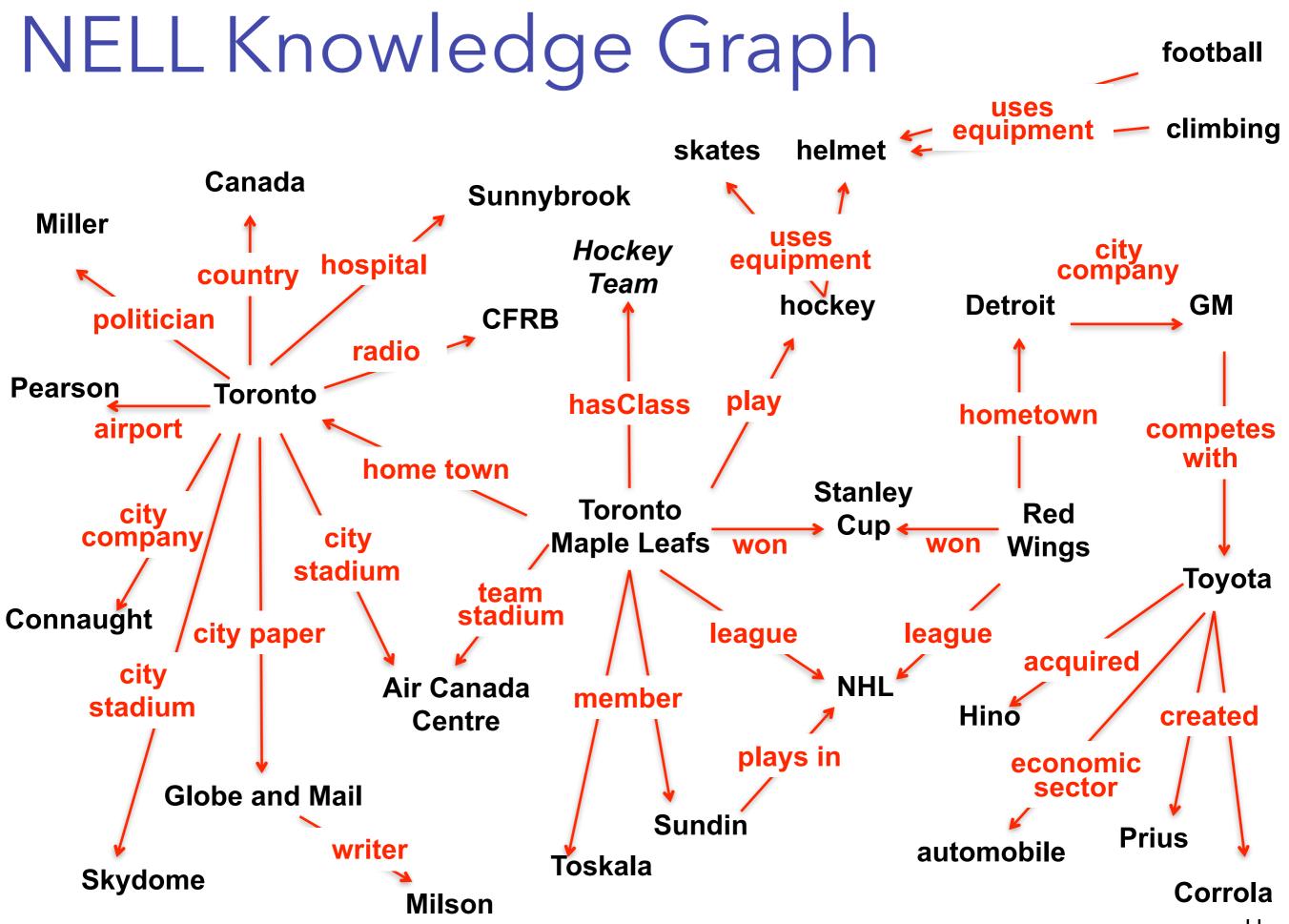
13:00-13:15 Overview and motivation

13:15-13:45 Case study: NELL

13:45-14:00 Bootstrapped Entity Extraction

14:00-15:00 Open Relation Extraction & Canonicalization

- 15:00-15:30 Coffee Break
- 15:30-16:15 Distantly-supervised Relation Extraction
- 16:15-16:45 Knowledge Graph Embeddings
- 16:45-17:00 Conclusion & QA



Never Ending Learning agent

Never Ending Learning agent

Persistent software individual

Never Ending Learning agent

Persistent software individual Learns many functions / knowledge types

Never Ending Learning agent

Persistent software individual Learns many functions / knowledge types Learns easier things first, then more difficult

Never Ending Learning agent

Persistent software individual Learns many functions / knowledge types Learns easier things first, then more difficult The more it learns, the more it can learn next

Never Ending Learning agent

Persistent software individual Learns many functions / knowledge types Learns easier things first, then more difficult The more it learns, the more it can learn next Learns from experience, and from advice

Inputs:

initial ontology

- initial ontology
- few seed examples of each ontology predicate

- initial ontology
- few seed examples of each ontology predicate
- the web

- initial ontology
- few seed examples of each ontology predicate
- the web
- occasional interaction with human trainers

- initial ontology
- few seed examples of each ontology predicate
- the web
- occasional interaction with human trainers

Inputs:

- initial ontology
- few seed examples of each ontology predicate
- the web
- occasional interaction with human trainers

The task:

Inputs:

- initial ontology
- few seed examples of each ontology predicate
- the web
- occasional interaction with human trainers

The task:

• run 24x7, forever

Inputs:

- initial ontology
- few seed examples of each ontology predicate
- the web
- occasional interaction with human trainers

The task:

- run 24x7, forever
- each day:

Inputs:

- initial ontology
- few seed examples of each ontology predicate
- the web
- occasional interaction with human trainers

The task:

- run 24x7, forever
- each day:
 - extract more facts from the web

NELL: Never Ending Language Learner @ CMU

Inputs:

- initial ontology
- few seed examples of each ontology predicate
- the web
- occasional interaction with human trainers

The task:

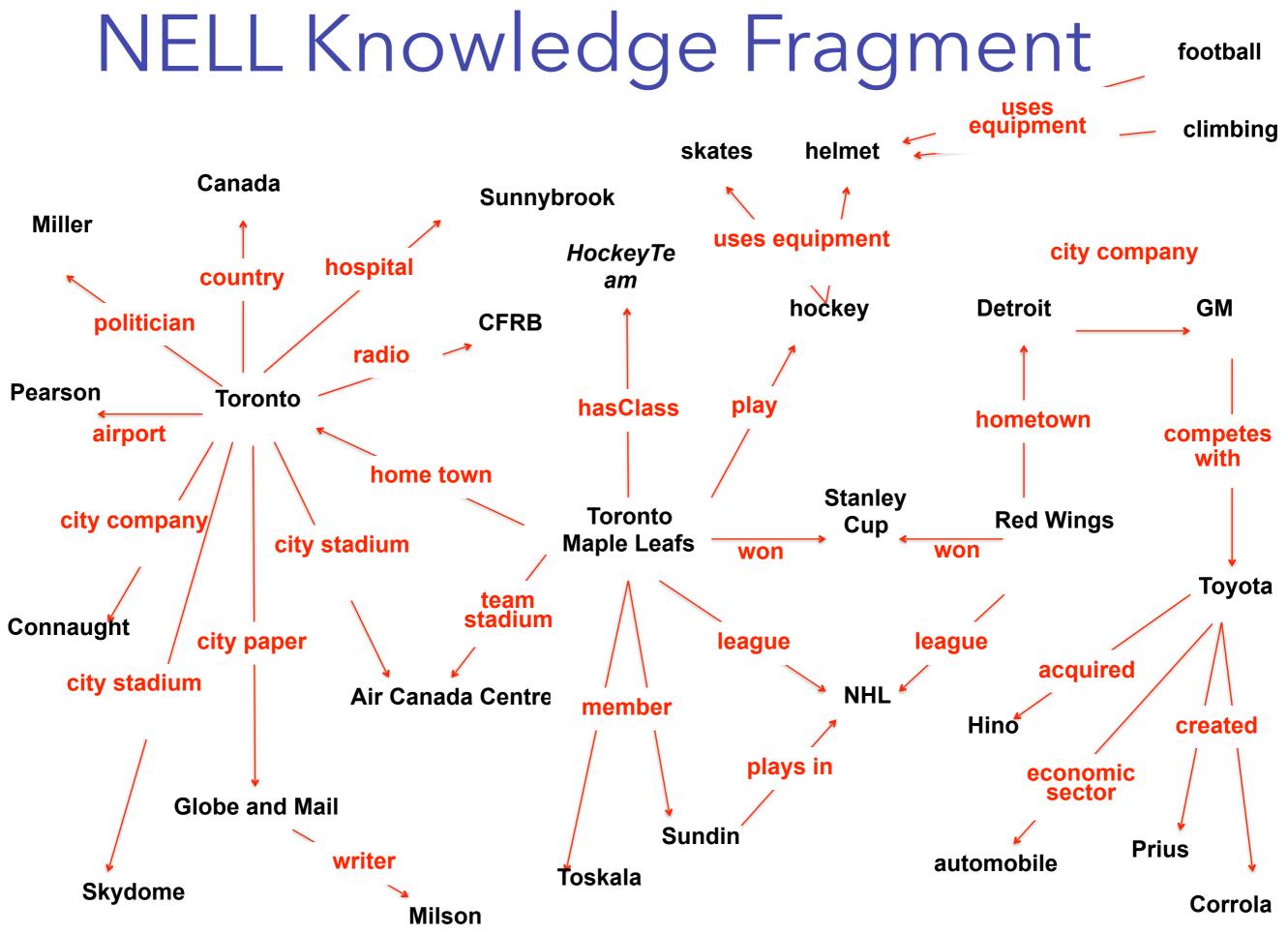
- run 24x7, forever
- each day:
 - extract more facts from the web
 - learn to read (perform #1) better than yesterday

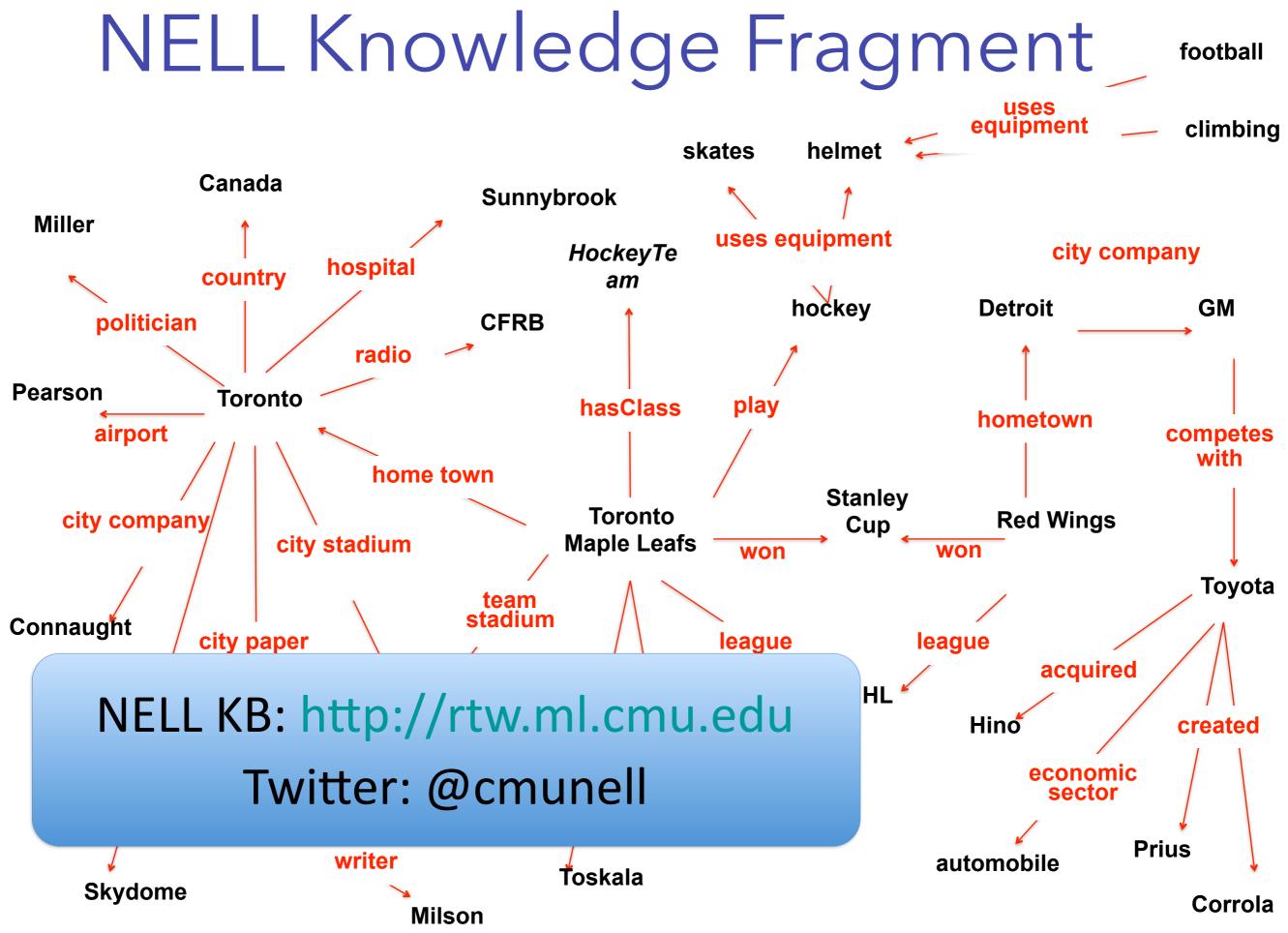
Running 24x7, since January, 12, 2010

Result: KB with > 100 million candidate beliefs, growing daily learning to reason, as well as read automatically extending its ontology

Running 24x7, since January, 12, 2010

Result: KB with > 100 million candidate beliefs, growing daily learning to reason, as well as read automatically extending its ontology





eg. "<u>diabetes</u>", "<u>Avandia</u>", "<u>tea</u>", "<u>IBM</u>", "<u>love</u>" "<u>baseball</u>"
 "<u>BacteriaCausesCondition</u>" "<u>kitchenItem</u>" "<u>ClothingGoesWithClothing</u>"

Recently-Learned Facts

instance	iteration	date learned
<u>mark_bellhorn</u> is a <u>Mexican person</u>	763	27-aug-2013
methenamine_mandelate_tablet is a drug	763	27-aug-2013
<u>pete_zimmer</u> is a <u>person</u>	763	27-aug-2013
<u>sandhills_clubtail</u> is a <u>vertebrate</u>	764	31-aug-2013
<u>jeffrey_carlson</u> is a <u>chef</u>	763	27-aug-2013
<u>sutton</u> is a park <u>in the city london</u>	767	06-sep-2013
<u>pushkin was born in moscow</u>	767	06-sep-2013
honda is a company that produces accord	766	04-sep-2013
spurs is a sports team that plays against magic	763	27-aug-2013
baseball is a sport played in the venue ballpark in arlington	766	04-sep-2013

. . .

Other Related Efforts

High Supervision

NELL

Low Supervision

Never-Ending Learning

By T. Mitchell, W. Cohen, E. Hruschka, P. Talukdar, B. Yang, J. Betteridge, A. Carlson, B. Dalvi, M. Gardner, B. Kisiel, J. Krishnamurthy, N. Lao, K. Mazaitis, T. Mohamed, N. Nakashole, E. Platanios, A. Ritter, M. Samadi, B. Settles, R. Wang, D. Wijaya, A. Gupta, X. Chen, A. Saparov, M. Greaves, and J. Welling

Abstract

Whereas people learn many different types of knowledge from diverse experiences over many years, and become better learners over time, most current machine learning systems are much more narrow, learning just a single function or data model based on statistical analysis of a single data set. We suggest that people learn better than computers precisely because of this difference, and we suggest a key direction for machine learning research is to develop software architectures that enable intelligent agents to also learn many types of knowledge, continuously over many years, and to become better learners over time. In this paper we define more precisely this never-ending learning paradigm for machine learning, and we present one case study: the Never-Ending Language Learner (NELL), which achieves a number of the desired properties of a never-ending learner. NELL has been learning to read the Web 24hrs/ day since January 2010, and so far has acquired a knowledge base with 120mn diverse, confidence-weighted beliefs (e.g., servedWith(tea, biscuits)), while learning thousands of interrelated functions that continually improve its reading competence over time. NELL has also learned to reason over its knowledge base to infer new beliefs it has not yet read from those it has, and NELL is inventing new relational predicates to extend the ontology it uses to represent beliefs. We describe the design of NELL, experimental results illustrating its behavior, and discuss both its successes and shortcomings as a case study in never-ending learning. NELL can be tracked online at http://rtw.ml.cmu.edu, and followed on Twitter at @CMUNELL.

1. INTRODUCTION

Machine learning is a highly successful branch of Artificial Intelligence (AI), and is now widely used for tasks from spam filtering, to speech recognition, to credit card fraud detection, to face recognition. Despite these successes, the ways in which computers learn today remain surprisingly narrow when compared to human learning. This paper explores an alternative paradigm for machine learning that more closely models the diversity, competence and cumulative nature of human learning. We call this alternative paradigm *neverending learning*.

To illustrate, note that in each of the above machine learning applications, the computer learns only a single function to perform a single task in isolation, usually from human labeled training examples of inputs and outputs of that function. In spam filtering, for instance, training examples consist of specific emails and spam or not-spam labels for each. This style of learning is often called *supervised function approximation*, because the abstract learning problem is to approximate some unknown function $f: X \rightarrow Y$

(e.g., the spam filter) given a training set of input/output pairs $\{\langle x_i, y_i \rangle\}$ of that function. Other machine learning paradigms exist as well (e.g., unsupervised clustering, topic modeling, reinforcement learning) but these paradigms also typically acquire only a single function or data model from a single dataset.

In contrast to these paradigms for learning single functions from well organized data sets over short time-frames, humans learn many different functions (i.e., different types of knowledge) over years of accumulated diverse experience, using extensive background knowledge learned from earlier experiences to guide subsequent learning. For example, humans first learn to crawl, then to walk, run, and perhaps ride a bike. They also learn to recognize objects, to predict their motions in different circumstances, and to control those motions. Importantly, they learn *cumulatively*: as they learn one thing this new knowledge helps them to more effectively learn the next, and if they revise their beliefs about the first then this change refines the second.

The thesis of our research is that we will never truly understand machine or human learning until we can build computer programs that, like people,

- · learn many different types of knowledge or functions,
- · from years of diverse, mostly self-supervised experience,
- in a staged curricular fashion, where previously learned knowledge enables learning further types of knowledge,
- where self-reflection and the ability to formulate new representations and new learning tasks enable the learner to avoid stagnation and performance plateaus.

We refer to this learning paradigm as "never-ending learning." The contributions of this paper are to (1) define more precisely the never-ending learning paradigm, (2) present as a case study a computer program called the NELL which implements several of these capabilities, and which has been learning to read the Web 24hrs/day since January 2010, and (3) identify from NELL's strengths and weaknesses a number of key design features important to any never-ending learning system. This paper is an elaboration and extension to an earlier overview of the NELL system.²⁷

2. RELATED WORK

Previous research has considered the problem of designing machine learning agents that persist over long periods

The original version of this paper appeared in the *Proceedings of the 29th AAAI Conference on Artificial Intelligence* (Austin, TX, Jan. 25–30, 2015), 2302–2310.

CACM 2018

NELL's Growth over Time

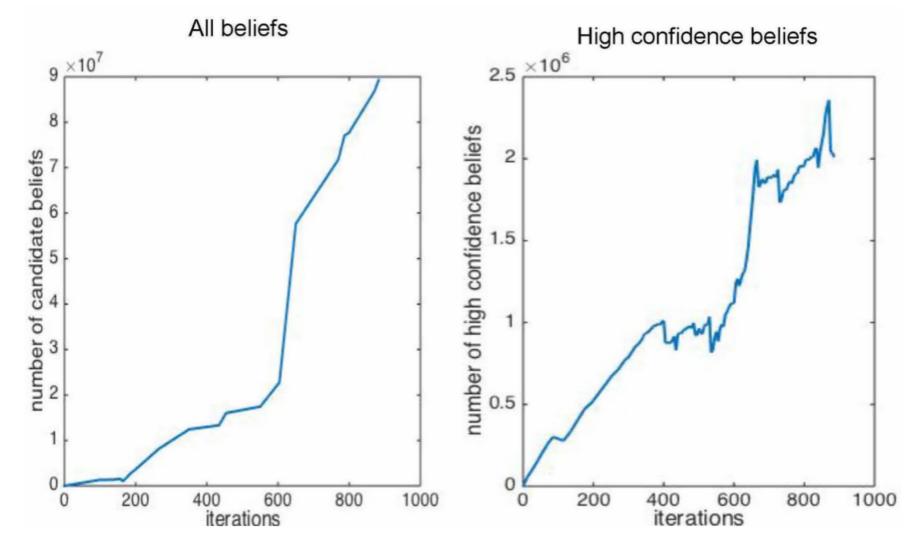
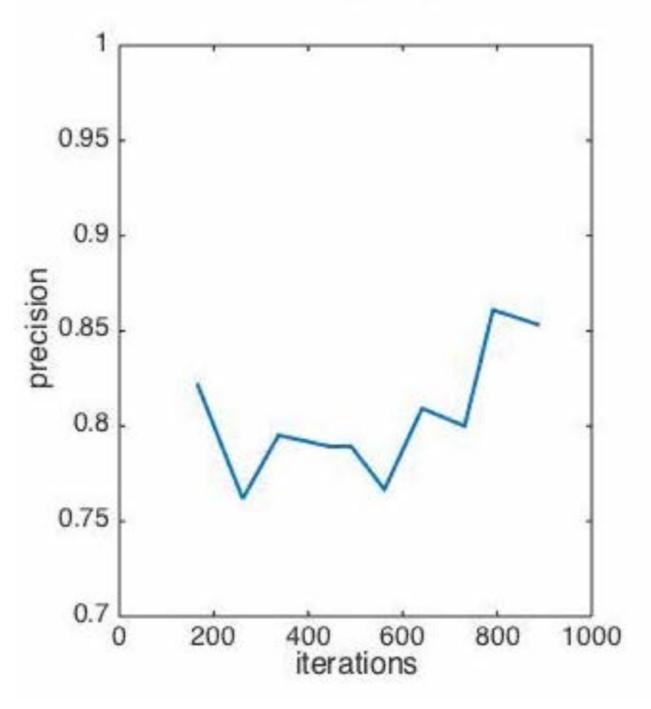


Figure 3: **NELL KB size over time.** Total number of beliefs (left) and number of high confidence beliefs (right) versus iterations. Left plot vertical axis is tens of millions, right plot vertical axis is in millions.

NELL's Accuracy over Time

Precision of top 10 predictions



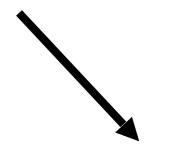
How does NELL work?

Learn which noun phrases are cities:

Paris Pittsburgh Seattle Montpelier

Learn which noun phrases are cities:

Paris Pittsburgh Seattle Montpelier



mayor of arg1 live in arg1

Learn which noun phrases are cities:

Paris Pittsburgh Seattle Montpelier San Francisco Berlin denial

mayor of arg1 live in arg1

Learn which noun phrases are cities:

Paris Pittsburgh Seattle Montpelier San Francisco Berlin denial

mayor of arg1 live in arg1

arg1 is home of traits such as arg1

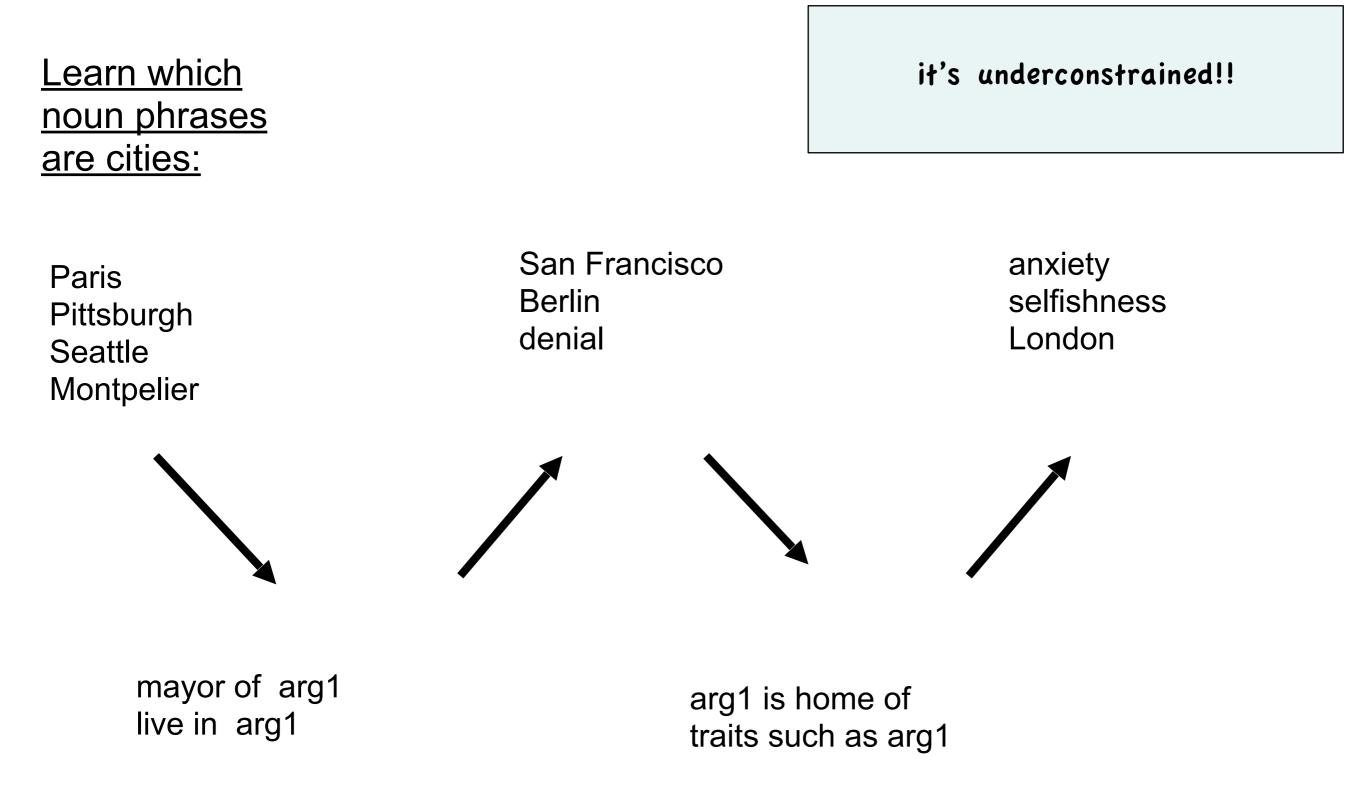
Learn which noun phrases are cities:

Paris Pittsburgh Seattle Montpelier

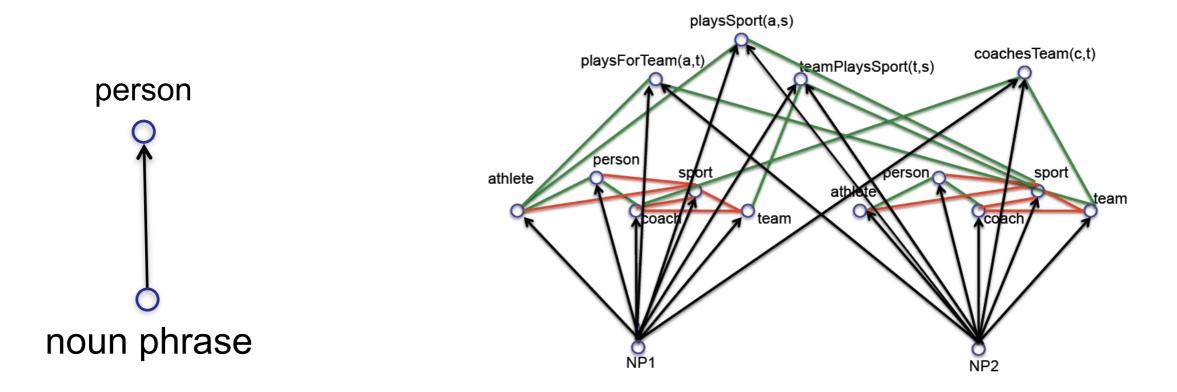
anxiety selfishness London

mayor of arg1 live in arg1

arg1 is home of traits such as arg1



Key Idea 1: Coupled semi-supervised training of many functions

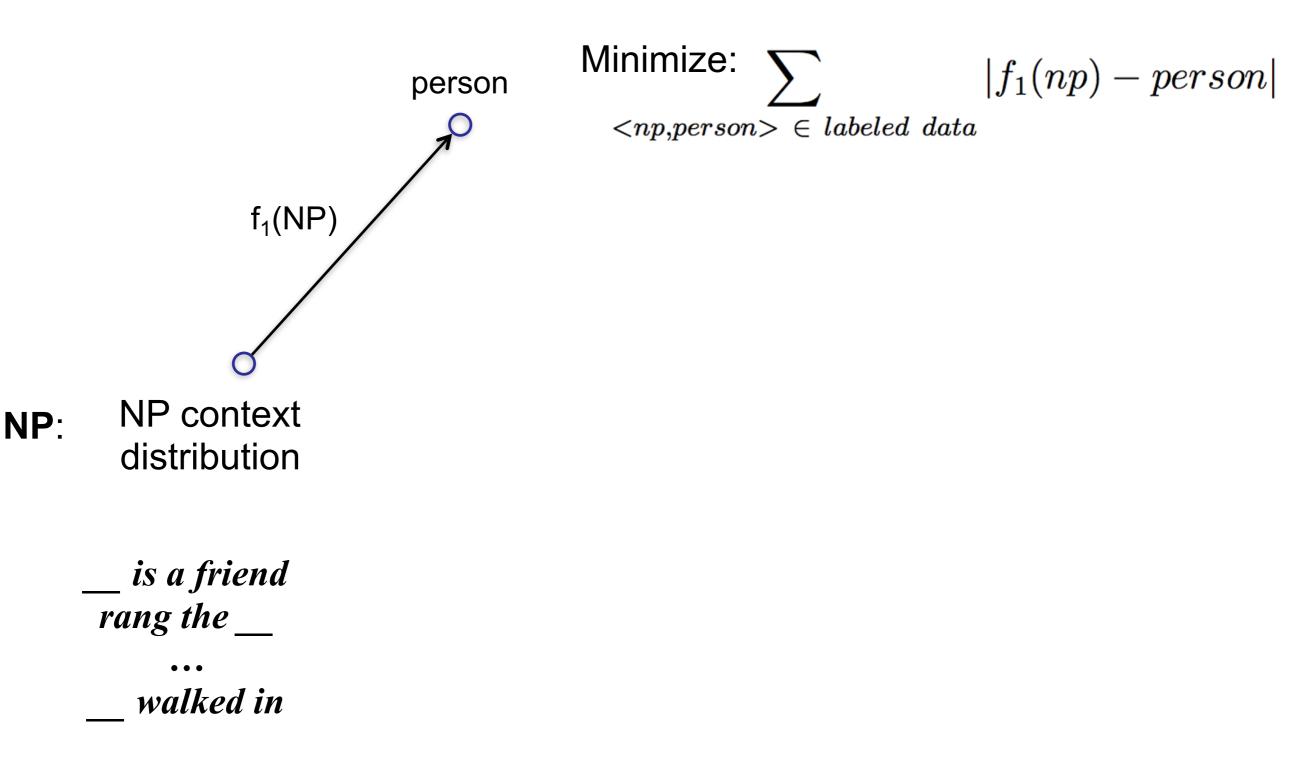


hard

(underconstrained) semi-supervised learning problem **much easier** (more constrained) semi-supervised learning problem

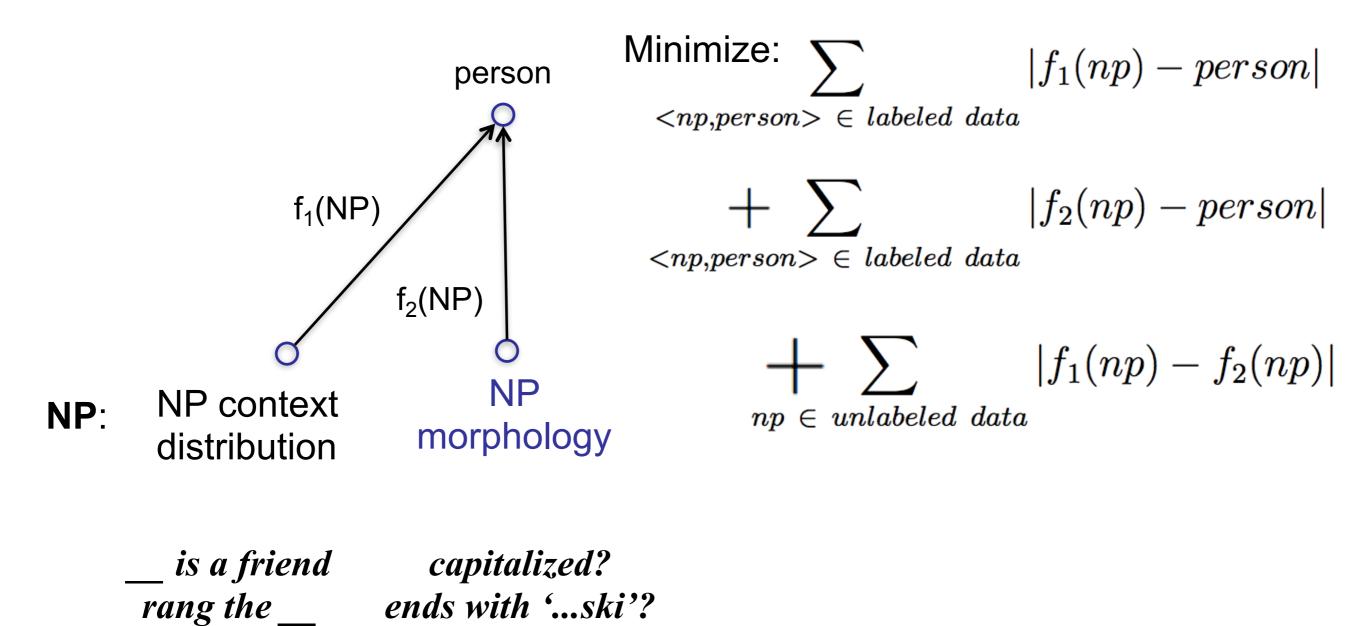
Type 1 Coupling: Co-Training, Multi-View Learning

Supervised training of 1 function:



Type 1 Coupling: Co-Training, Multi-View Learning

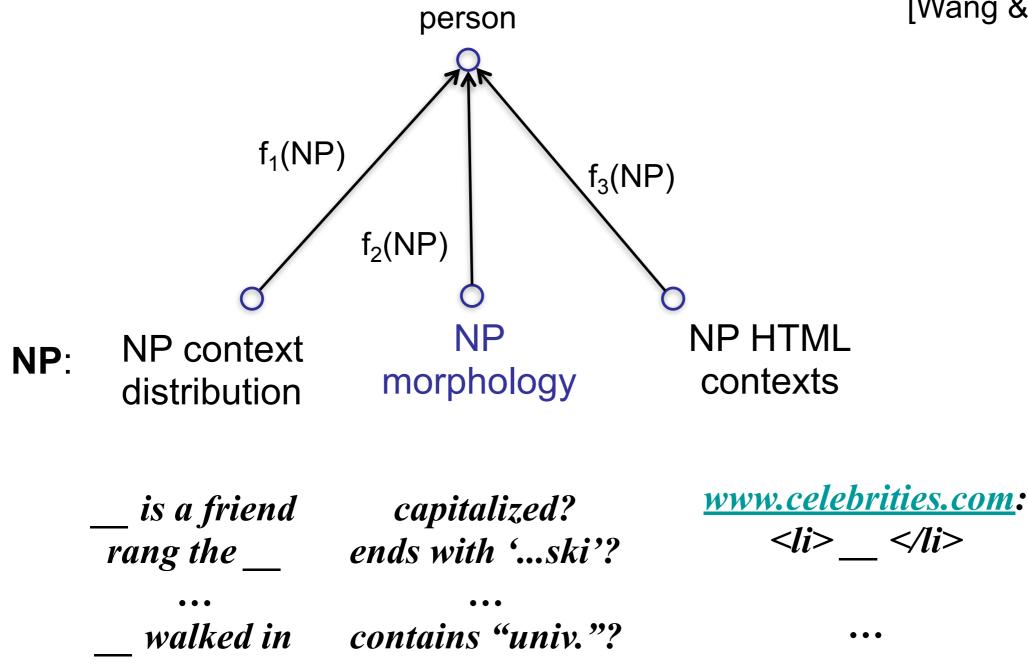
Coupled training of 2 functions:



walked in contains "univ."?

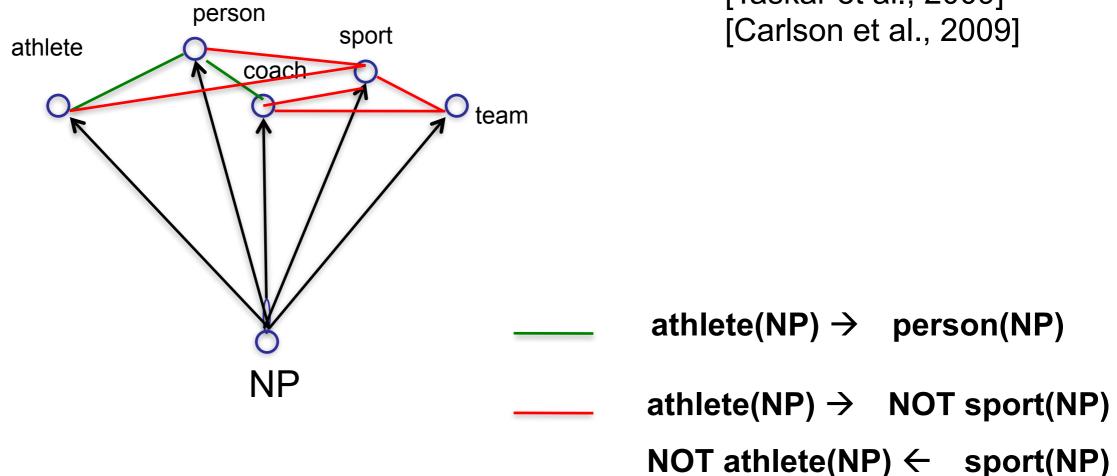
Type 1 Coupling: Co-Training, Multi-View Learning

[Blum & Mitchell; 98] [Dasgupta et al; 01] [Ganchev et al., 08] [Sridharan & Kakade, 08] [Wang & Zhou, ICML10]

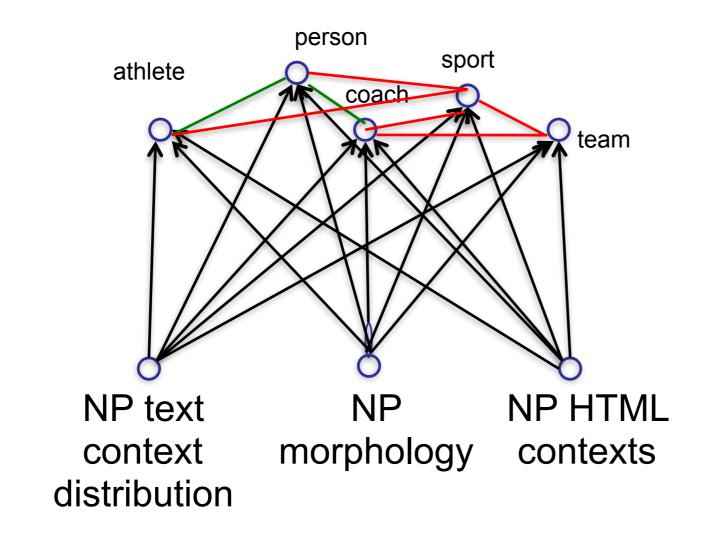


Type 2 Coupling: Multi-task, Structured Outputs

[Daume, 2008] [Bakhir et al., eds. 2007] [Roth et al., 2008] [Taskar et al., 2009] [Carlson et al., 2009]

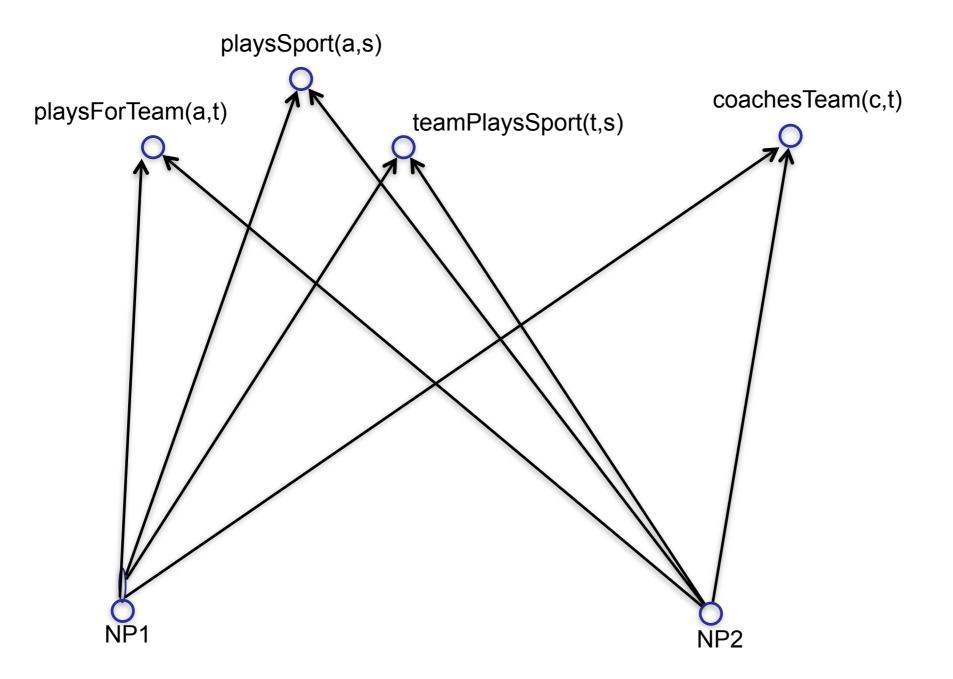


Multi-view, Multi-Task Coupling



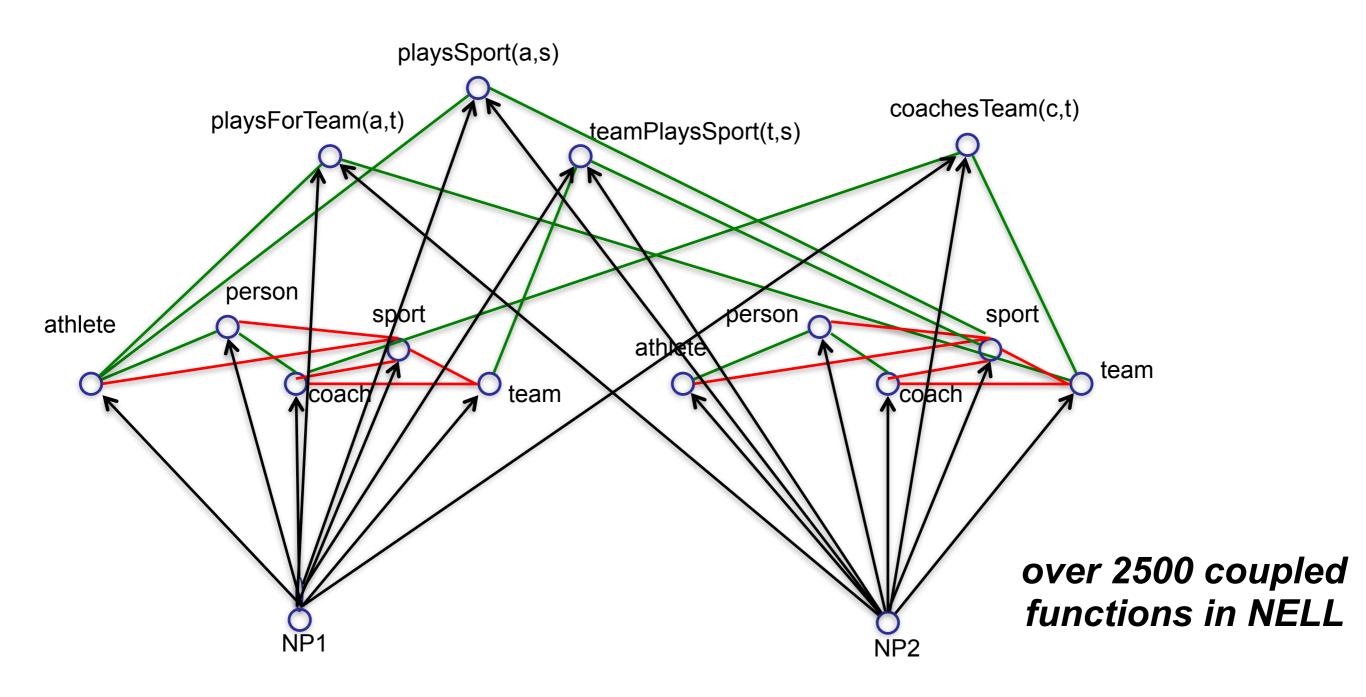
NP:

Type 3 Coupling: Learning Relations



Type 3 Coupling: Argument Types

playsSport(NP1,NP2) → athlete(NP1), sport(NP2)



NELL: Learned reading strategies

Plays Sport(arg1,arg2): arg1_was_playing_arg2_arg2_megastar_arg1_arg2_icons_arg1 arg2_player_named_arg1_arg2_prodigy_arg1 arg1_is_the_tiger_woods_of_arg2_arg2_career_of_arg1_arg2_greats_as_arg1 arg1_plays_arg2_arg2_player_is_arg1_arg2_legends_arg1 arg1_announced_his_retirement_from_arg2_arg2_operations_chief_arg1 arg2_player_like_arg1 arg2_and_golfing_personalities_including_arg1 arg2_players_like_arg1 arg2_greats_like_arg1 arg2_players_are_steffi_graf_and_arg1_arg2_great_arg1_arg2_champ_arg1 arg2_greats_such_as_arg1 arg2_professionals_such_as_arg1 arg2 hit by arg1 arg2 greats arg1 arg2 icon arg1 arg2 stars like arg1 arg2_pros_like_arg1_arg1_retires_from_arg2_arg2_phenom_arg1 arg2_lesson_from_arg1 arg2_architects_robert_trent_jones_and_arg1 arg2_sensation_arg1 arg2_pros_arg1 arg2_stars_venus_and_arg1 arg2_hall_of_famer_arg1 arg2_superstar_arg1 arg2_legend_arg1 arg2_legends_such_as_arg1 arg2_players_is_arg1 arg2_pro_arg1 arg2_player_was_arg1 arg2_god_arg1 arg2_idol_arg1 arg1_was_born_to_play_arg2_arg2_star_arg1_arg2_hero_arg1 arg2_players_are_arg1 arg1_retired_from_professional_arg2 arg2_legends_as_arg1 arg2_autographed_by_arg1 arg2_champion_arg1 ...

NELL: Learned reading strategies

Plays_Sport(arg1,arg2):

arg1_was_playing_arg2 arg2_megasta arg2_player_named_arg1 arg2_prodig arg1 is the tiger woods of arg2 arg2 arg1_plays_arg2_arg2_player_is_arg1 arg1_announced_his_retirement_from_a arg2_player_like_arg1 arg2_and_golfin arg2_players_like_arg1 arg2_greats_lil arg2_players_are_steffi_graf_and_arg1 arg2_greats_such_as_arg1 arg2_profe arg2 hit by arg1 arg2 greats arg1 ar arg2_pros_like_arg1_arg1_retires_from arg2_lesson_from_arg1 arg2_architect arg2 sensation arg1 arg2 pros arg1 arg2_hall_of_famer_arg1 arg2_supersta arg2_legends_such_as_arg1 arg2_pla arg2_player_was_arg1 arg2_god_arg1 arg1_was_born_to_play_arg2_arg2_sta arg2_players_are_arg1 arg1_retired_fr arg2_legends_as_arg1 arg2_autograp

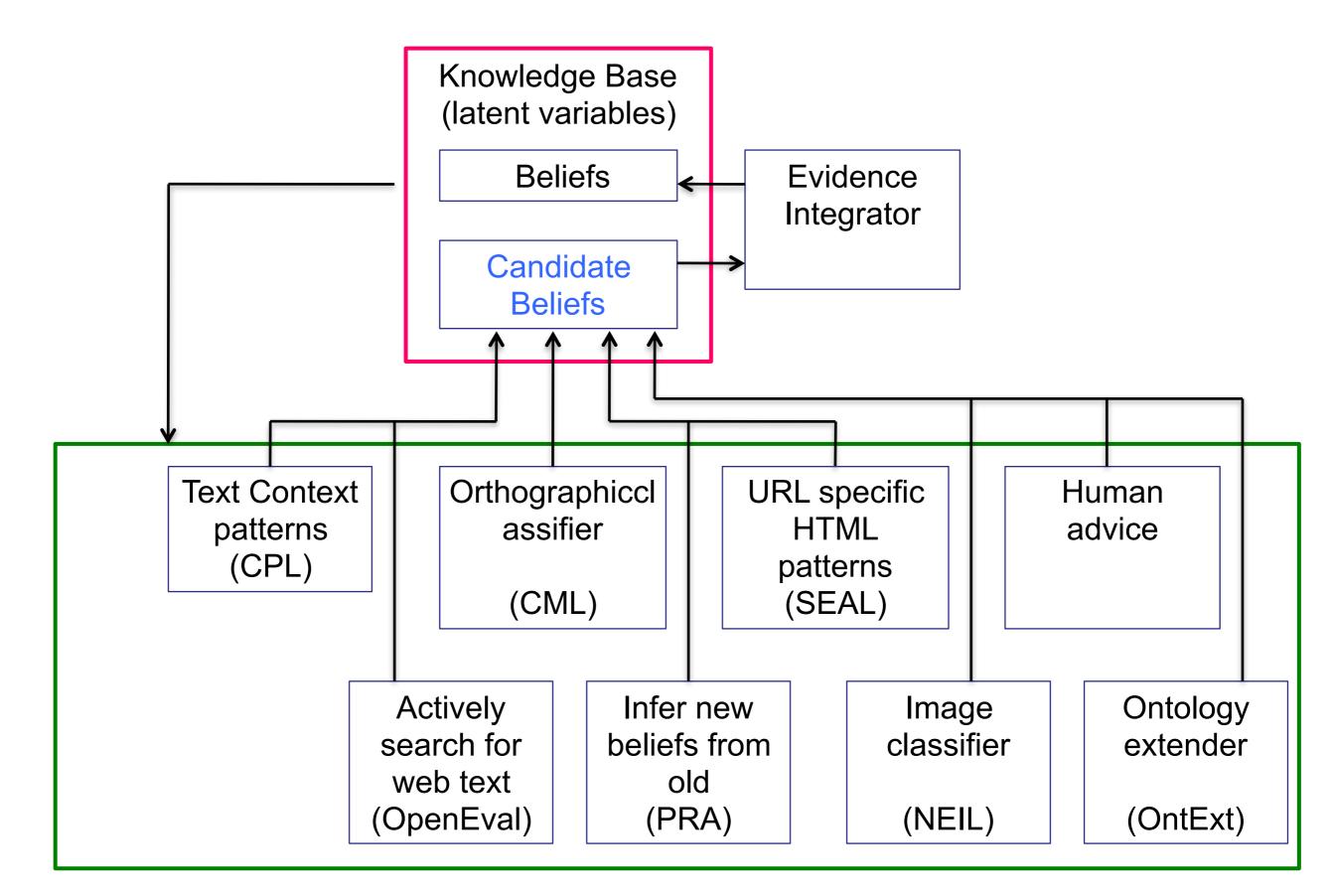
Predicate	Feature	Weight
mountain	LAST=peak	1.791
mountain	LAST=mountain	1.093
mountain	FIRST=mountain	-0.875
musicArtist	LAST=band	1.853
musicArtist	POS=DT_NNS	1.412
musicArtist	POS=DT_JJ_NN	-0.807
newspaper	LAST=sun	1.330
newspaper	LAST=university	-0.318
newspaper	POS=NN_NNS	-0.798
university	LAST=college	2.076
university	PREFIX=uc	1.999
university	LAST=state	1.992
university	LAST=university	1.745
university	FIRST=college	-1.381
visualArtMovement	SUFFIX=ism	1.282
visualArtMovement	PREFIX=journ	-0.234
visualArtMovement	PREFIX=budd	-0.253

NELL: Learned reading strategies

Plays_Sport(arg1,arg2):

Plays_Sport(ar	gr,argz).			
_	playing_arg2_arg2_megasta	Predicate	Feature	Weight
arg2_playe arg1_is_the arg1_plays arg1_annot arg2_playe arg2_playe arg2_playe arg2_playe arg2_pros_ arg2_lesso arg2_lesso arg2_lesso arg2_legen	playing_arg2 arg2_megasta er_named_arg1 arg2_prodig e_tiger_woods_of_arg2 arg2 arg2 arg2_player_is_arg1 unced_his_retirement_from_a er_like_arg1 arg2_and_golfir ers_like_arg1 arg2_greats_lil ers_are_steffi_graf_and_arg1 is_such_as_arg1 arg2_profe y_arg1 arg2_greats_arg1 ar like_arg1 arg1_retires_from on_from_arg1 arg2_architect ation_arg1 arg2_pros_arg1 a of_famer_arg1 arg2_supersta nds_such_as_arg1 arg2_god_arg1	Predicate mountain mountain mountain musicArtist musicArtist musicArtist newspaper newspaper newspaper university university university university	Feature LAST=peak LAST=mountain FIRST=mountain LAST=band POS=DT_NNS POS=DT_JJ_NN LAST=sun LAST=sun LAST=college PREFIX=uc LAST=state LAST=state LAST=university	Weight 1.791 1.093 -0.875 1.853 1.412 -0.807 1.330 -0.318 -0.798 2.076 1.999 1.992 1.745
	born_to_play_arg2_arg2_sta	university	FIRST=college	-1.381
	pre are ard1 ard1 retired fr	visualArtMovemen	0	1 282
Predicate	Web URL		Extraction Template	
academicField athlete bird bookAuthor	http://scholendow.ais.msu.edu/stude http://www.quotes-search.com/d_oce http://www.michaelforsberg.com/sto http://lifebehindthecurve.com/	cupation.aspx?o=+athlete	<pre> [X] - </pre>	

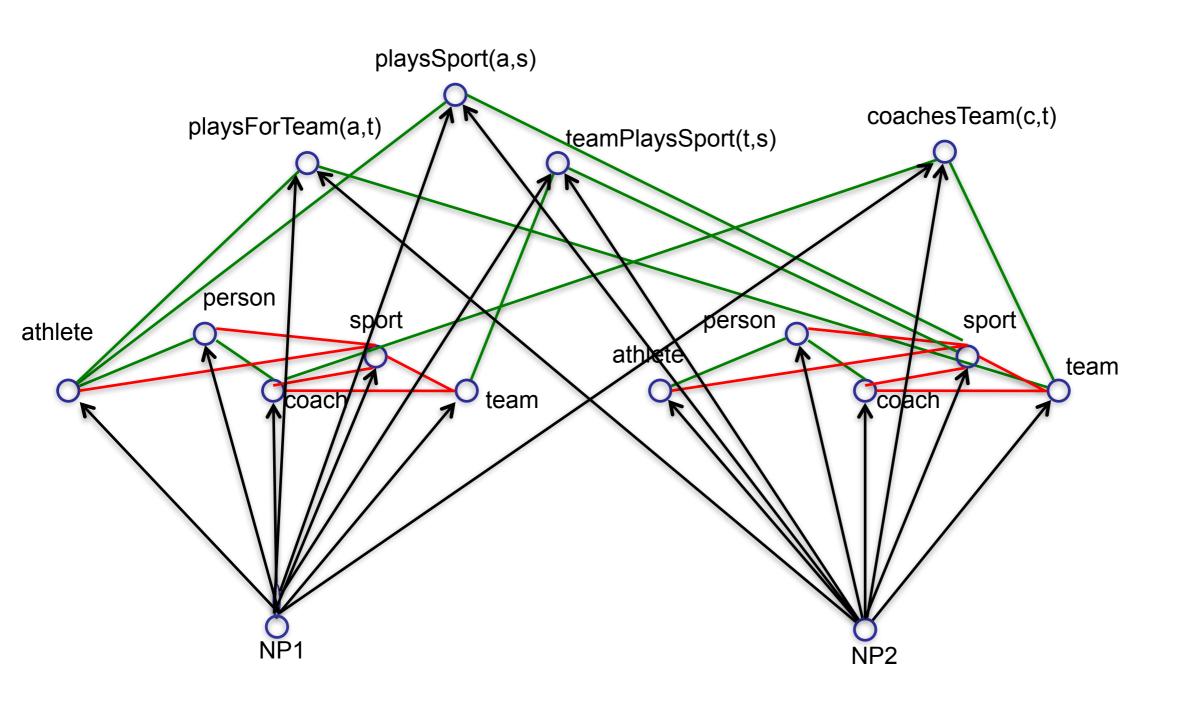
NELL Architecture



If coupled learning is the key, how can we get new coupling constraints?

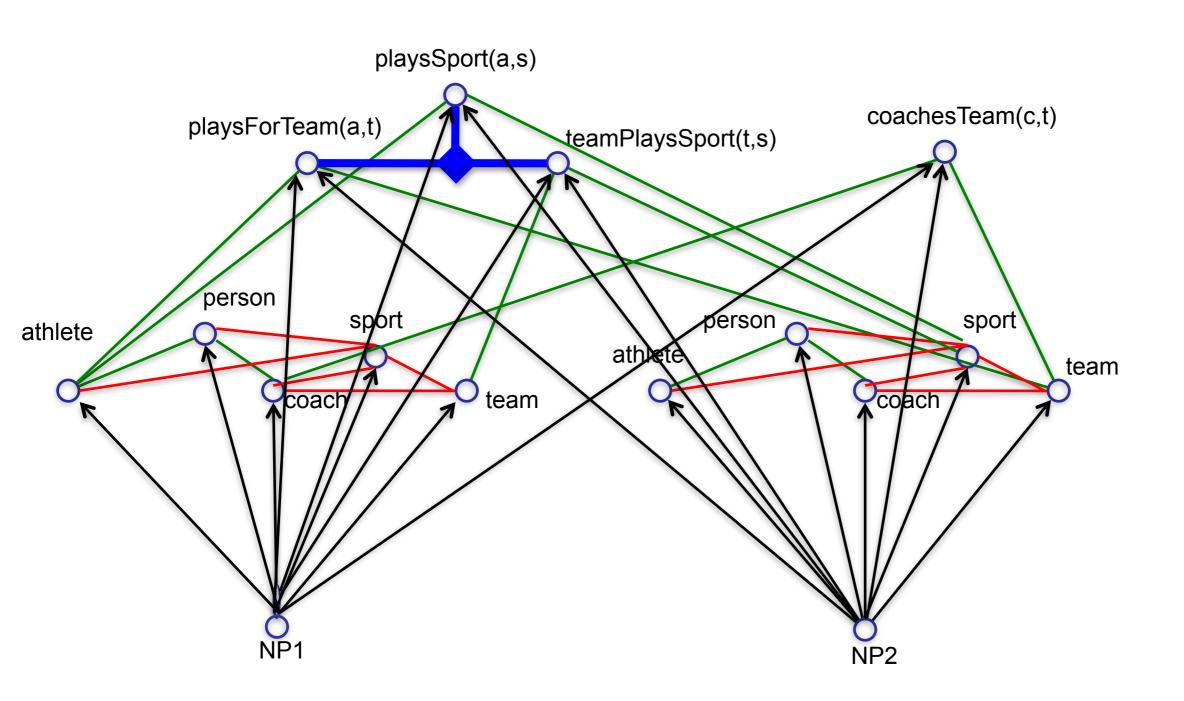
Learned Probabilistic Horn Clause Rules

0.93 playsSport(?x,?y) ← playsForTeam(?x,?z), teamPlaysSport(?z,?y)



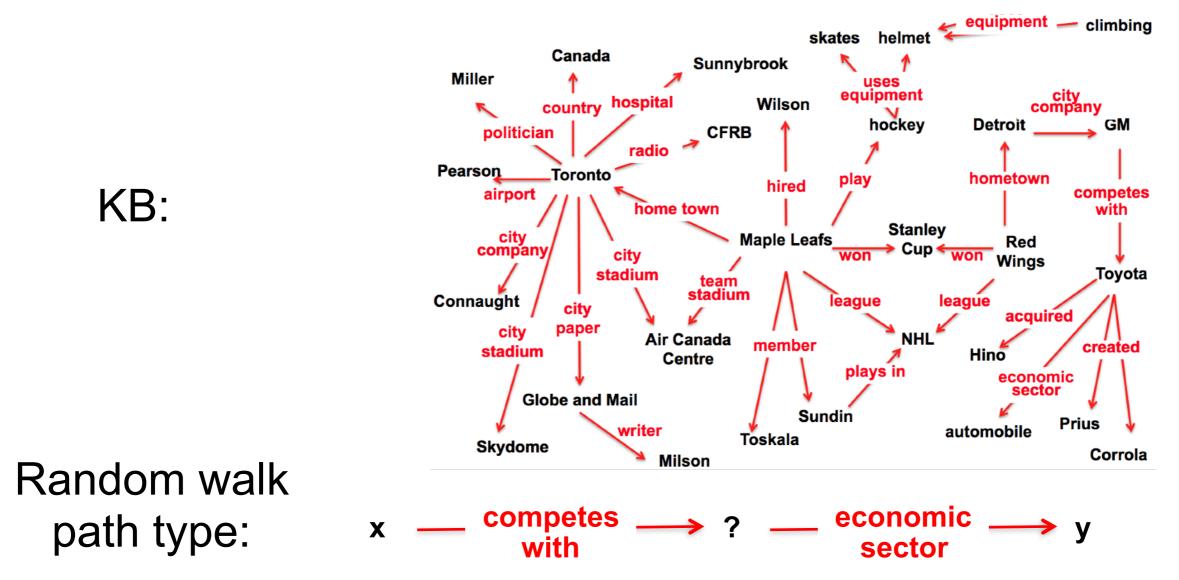
Learned Probabilistic Horn Clause Rules

0.93 playsSport(?x,?y) ← playsForTeam(?x,?z), teamPlaysSport(?z,?y)



Inference by KB Random Walks

[Lao et al, EMNLP 2011]



model Pr(R(x,y)): logistic function for R(x,y)

ith feature: probability of arriving at node y starting at node x, and taking a random walk along path type i CityLocatedInCountry(Pittsburgh) = ?

[Lao et al, EMNLP 2011]

Pittsburgh

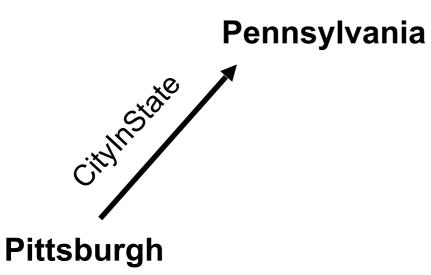
Feature = Typed Path

CityInState, CityInstate⁻¹, CityLocatedInCountry

Feature Value

<u>Logistic</u> <u>Regresssion</u> <u>Weight</u> 0.32

CityLocatedInCountry(Pittsburgh) = ?

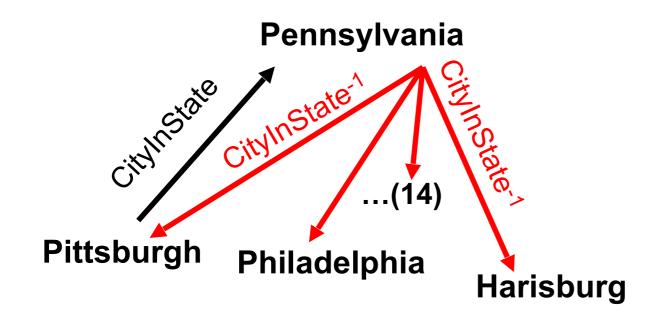


Feature = Typed Path

CityInState, CityInstate⁻¹, CityLocatedInCountry

Feature Value

<u>Logistic</u> <u>Regresssion</u> <u>Weight</u> 0.32 CityLocatedInCountry(Pittsburgh) = ?

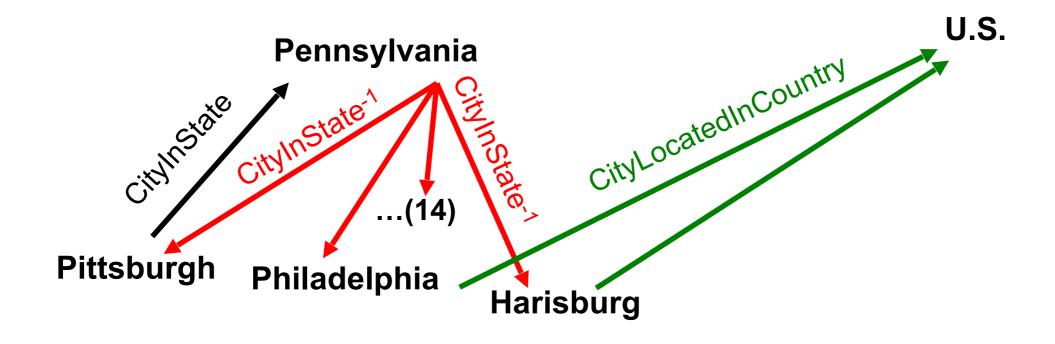


CityInState, CityInstate⁻¹, CityLocatedInCountry

Feature Value

<u>Logistic</u> <u>Regresssion</u> <u>Weight</u> 0.32

CityLocatedInCountry(Pittsburgh) = ?

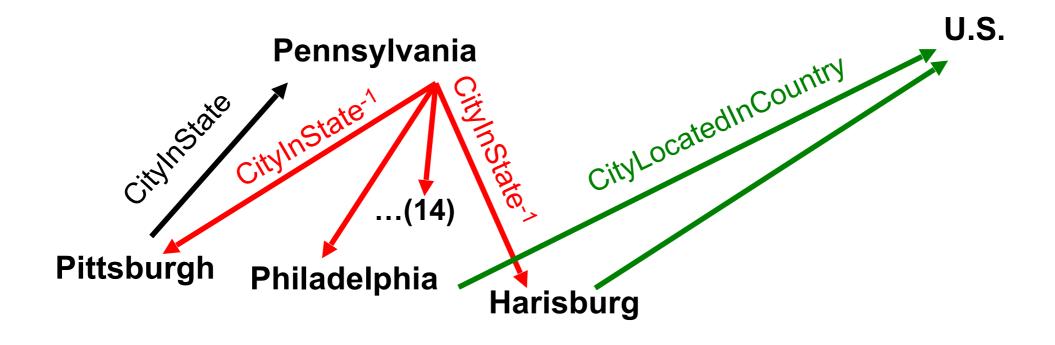


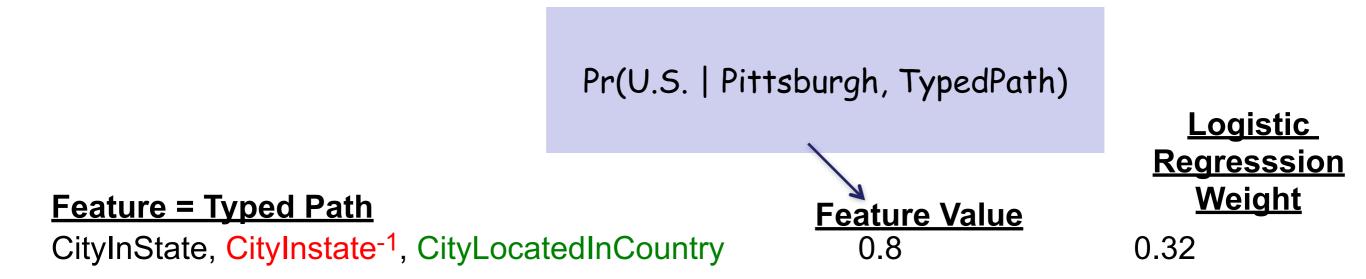
CityInState, CityInstate⁻¹, CityLocatedInCountry

Feature Value

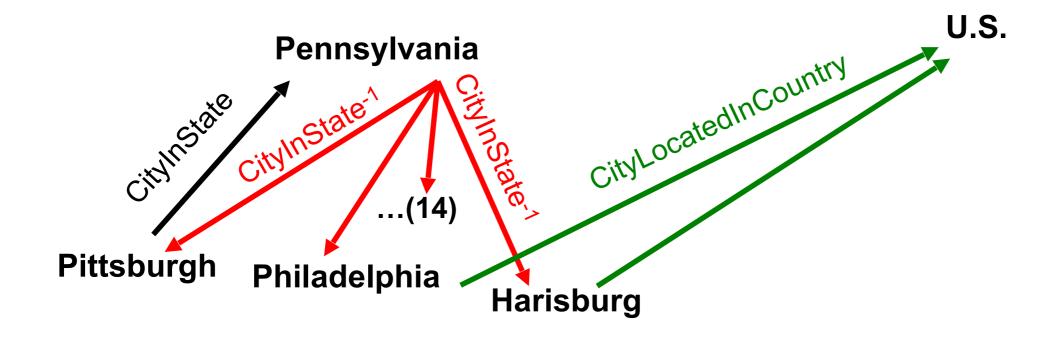
<u>Logistic</u> <u>Regresssion</u> <u>Weight</u> 0.32

CityLocatedInCountry(Pittsburgh) = ?

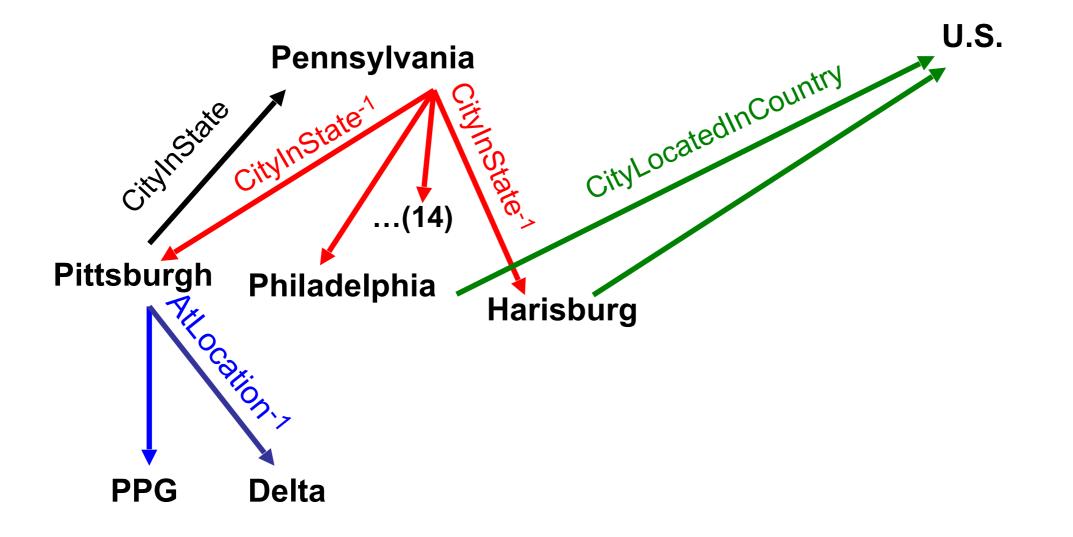




CityLocatedInCountry(Pittsburgh) = ?



CityLocatedInCountry(Pittsburgh) = ?



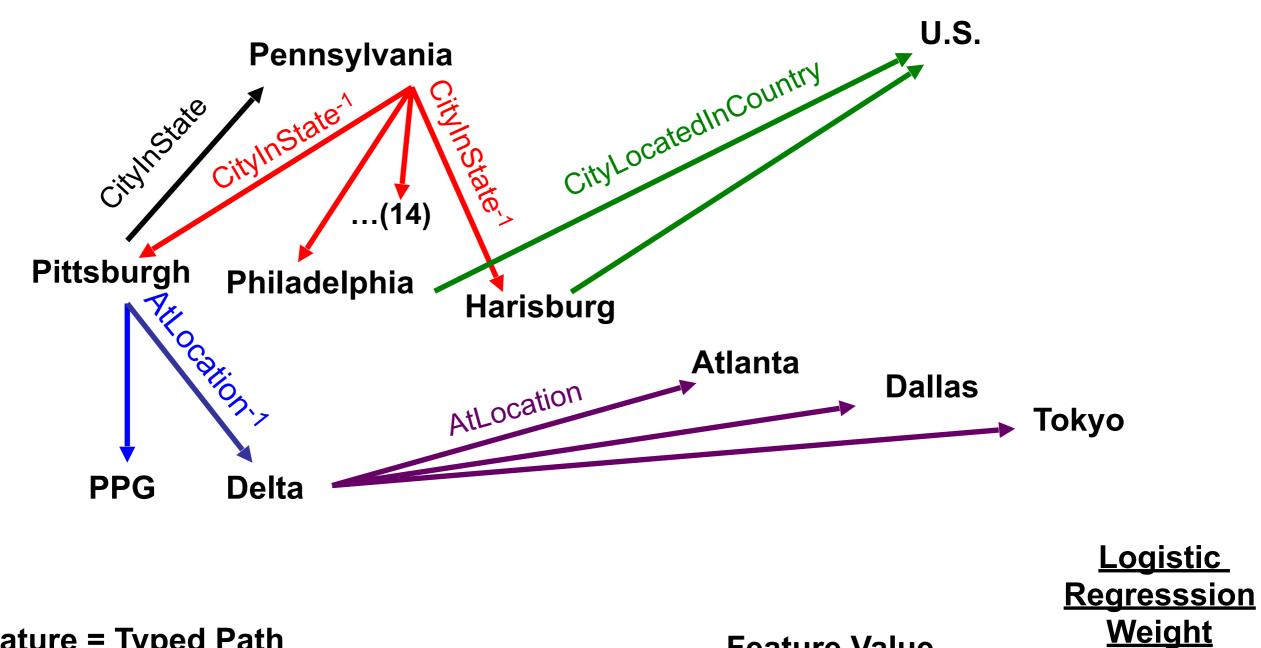
Feature = Typed Path

CityInState, CityInstate⁻¹, CityLocatedInCountry AtLocation⁻¹, AtLocation, CityLocatedInCountry

Feature	<u>Value</u>
0.8	

<u>Logistic</u> <u>Regresssion</u> <u>Weight</u> 0.32 0.20

CityLocatedInCountry(Pittsburgh) = ?

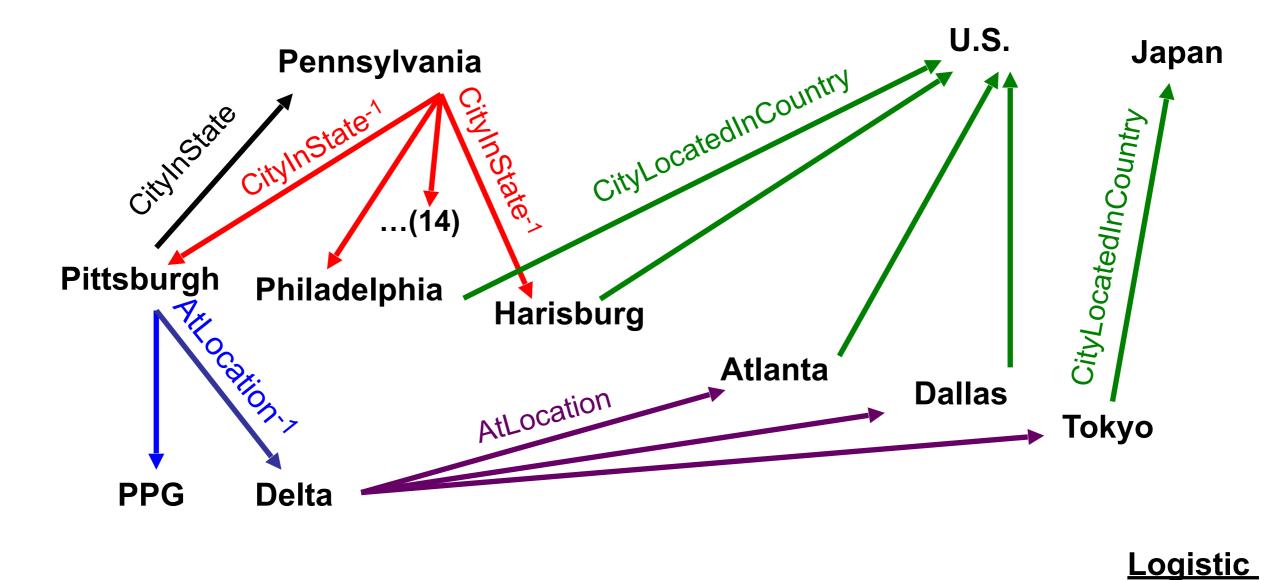


Feature = Typed Path

CityInState, CityInstate⁻¹, CityLocatedInCountry AtLocation⁻¹, AtLocation, CityLocatedInCountry

Feature Value	
0.8	0.32
	0.20

CityLocatedInCountry(Pittsburgh) = ?



Feature = Typed Path

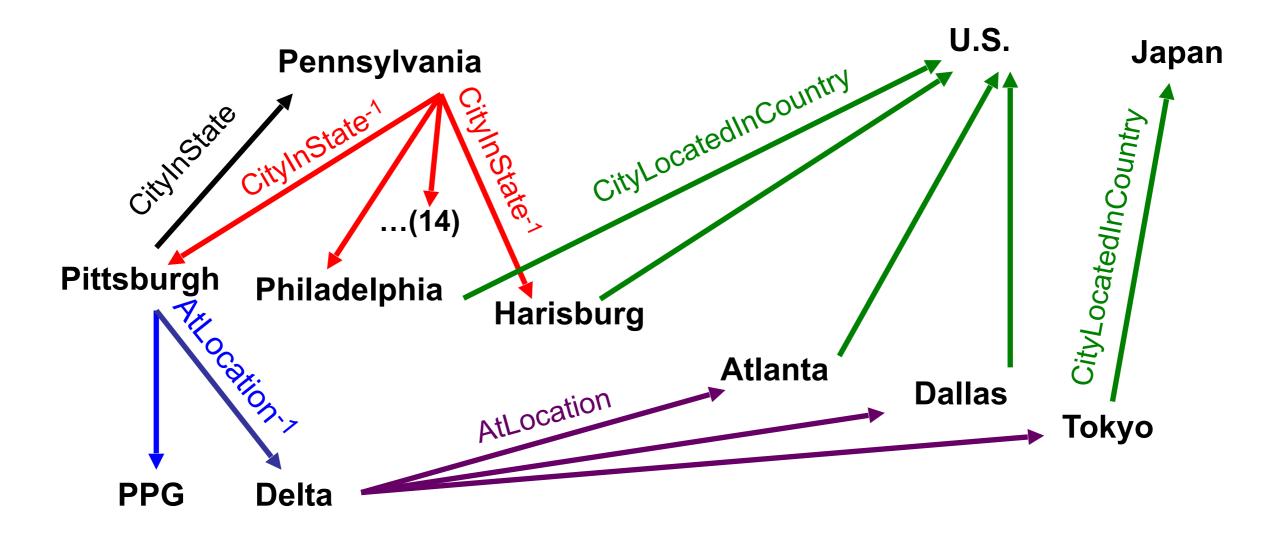
CityInState, CityInstate⁻¹, CityLocatedInCountry AtLocation⁻¹, AtLocation, CityLocatedInCountry

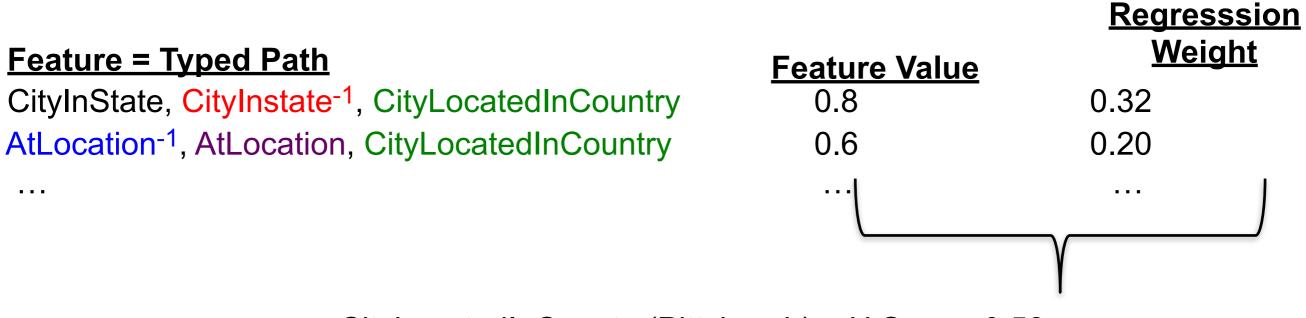
Feature Value	<u>Weight</u>
0.8	0.32
0.6	0.20

<u>Regresssion</u>

CityLocatedInCountry(Pittsburgh) = ?

Logistic





CityLocatedInCountry(Pittsburgh) = U.S. p=0.58

Random walk inference: learned path types

- CityLocatedInCountry(*city, country*):
- 8.04 cityliesonriver, cityliesonriver⁻¹, citylocatedincountry
- 5.42 hasofficeincity⁻¹, hasofficeincity, citylocatedincountry
- 4.98 cityalsoknownas, cityalsoknownas, citylocatedincountry
- 2.85 citycapitalofcountry, citylocated incountry⁻¹, citylocated incountry
- 2.29 agentactsinlocation⁻¹, agentactsinlocation, citylocatedincountry
- 1.22 statehascapital⁻¹, statelocatedincountry
- 0.66 citycapitalofcountry
- 7 of the 2985 learned paths for CityLocatedInCountry

Key Idea 3: Automatically extend ontology

Example Discovered Relations

[Mohamed et al. EMNLP 2011]

Category Pair	Frequent Instance Pairs	Text Contexts	Suggestec Name
MusicInstrument Musician	sitar, George Harrison tenor sax, Stan Getz trombone, Tommy Dorsey vibes, Lionel Hampton	ARG1 master ARG2 ARG1 virtuoso ARG2 ARG1 legend ARG2 ARG2 plays ARG1	Master
Disease Disease	pinched nerve, herniated disk tennis elbow, tendonitis blepharospasm, dystonia	ARG1 is due to ARG2 ARG1 is caused by ARG2	IsDueTo
CellType Chemical	epithelial cells, surfactant neurons, serotonin mast cells, histomine	ARG1 that release ARG2 ARG2 releasing ARG1	ThatReleas
Mammals Plant	koala bears, eucalyptus sheep, grasses goats, saplings	ARG1 eat ARG2 ARG2 eating ARG1	Eat
River City	Seine, Paris Nile, Cairo Tiber river, Rome	ARG1 in heart of ARG2 ARG1 which flows through ARG2	InHeartOf

NELL: sample of self-added relations

- athleteWonAward
- animalEatsFood
- languageTaughtInCity
- clothingMadeFromPlant
- beverageServedWithFood
- fishServedWithFood
- athleteBeatAthlete
- athleteInjuredBodyPart
- arthropodFeedsOnInsect
- animalEatsVegetable
- plantRepresentsEmotion
- foodDecreasesRiskOfDisease

- clothingGoesWithClothing
- bacteriaCausesPhysCondition
- buildingMadeOfMaterial
- emotionAssociatedWithDisease
- foodCanCauseDisease
- agriculturalProductAttractsInsect
- arteryArisesFromArtery
- countryHasSportsFans
- bakedGoodServedWithBeverage
- beverageContainsProtein
- animalCanDevelopDisease
- beverageMadeFromBeverage

Key Idea 4: Cumulative, Staged Learning Learning X improves ability to learn Y

- 1. Classify noun phrases (NP's) by category
- 2. Classify NP pairs by relation
- 3. Discover rules to predict new relation instances
- 4. Learn which NP's (co)refer to which latent concepts
- 5. Discover new relations to extend ontology
- 6. Learn to infer relation instances via targeted random walks
- 7. Learn to assign temporal scope to beliefs
- 8. Learn to microread single sentences
- 9. Vision: co-train text and visual object recognition
 - 10. Goal-driven reading: predict, then read to corroborate/correct
 - 11. Make NELL a conversational agent on Twitter
 - 12. Add a robot body to NELL

NELL Summary

- Learning
 - Coupled multi-task, multi-view semi-supervised training
- Inference
 - Data mine the KB to learn inference rules
 - Scalable any-time inference via random walks
- Representation
 - Ontology extension
 - invent new categories and relations
 - combine statistical clustering with direct reading
 - Infer millions of latent concepts from observable text
- Curriculum
 - learn easiest things first, build on those to "learn to learn"

Outline

13:00-13:15 Overview and motivation

13:15-13:45 Case study: NELL

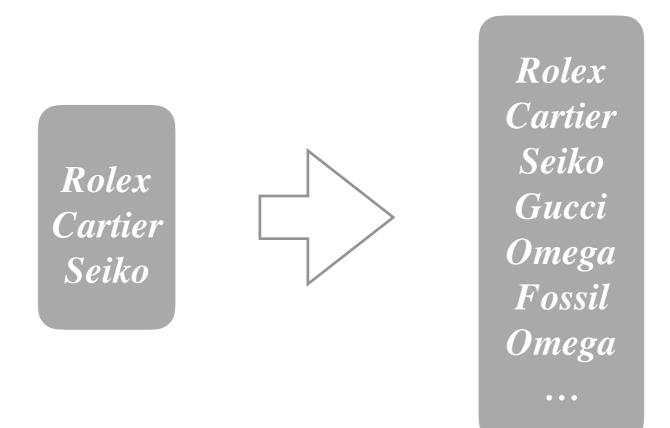
13:45-14:00 Bootstrapped Entity Extraction

14:00-15:00 Open Relation Extraction & Canonicalization

- 15:00-15:30 Coffee Break
- 15:30-16:15 Distantly-supervised Relation Extraction
- 16:15-16:45 Knowledge Graph Embeddings
- 16:45-17:00 Conclusion & QA

Set Expansion

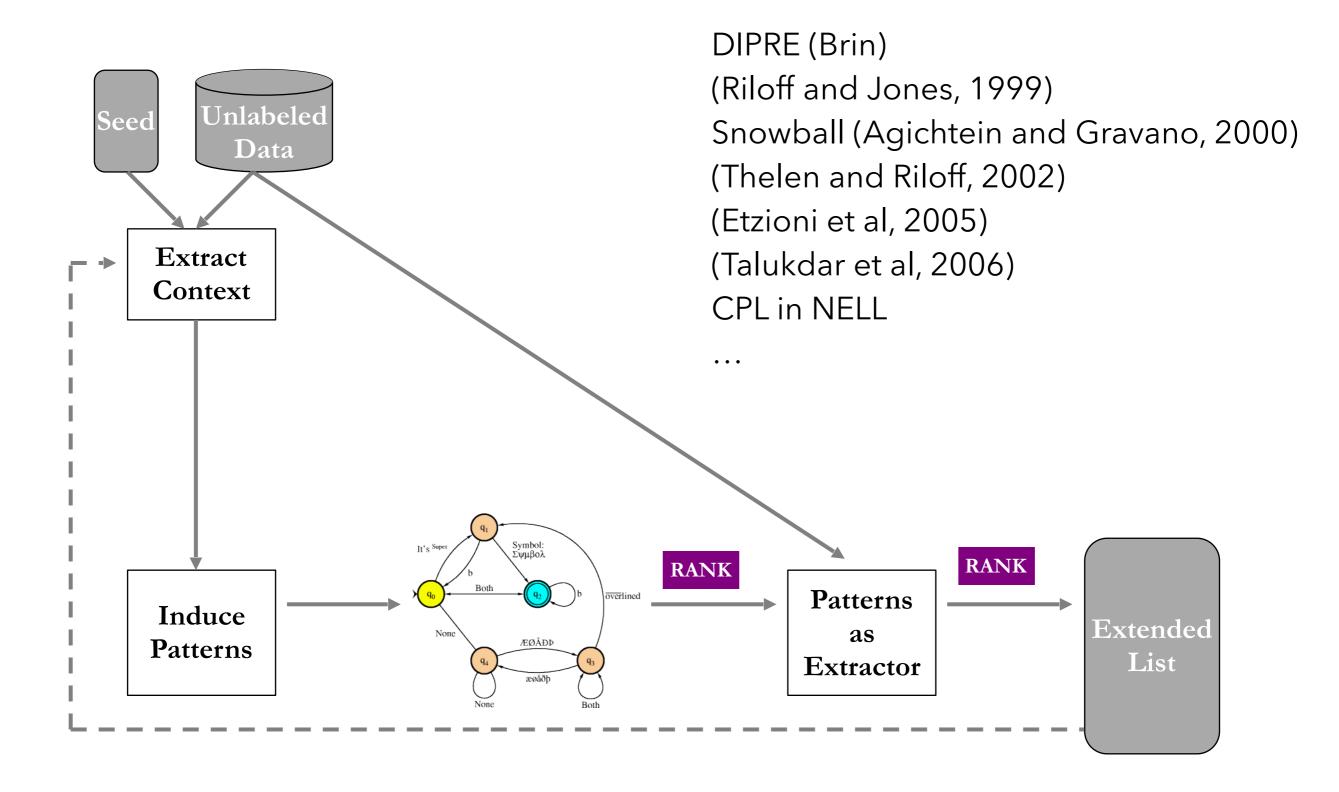
Given seed instances from a class, automatically identify more instances from that class



Many applications:

web advertising, knowledge graph population, ...

Context Pattern Induction



Extractions using Context Patterns

Induced Patterns (containing sequence "watch")

gold - <ent>- watch</ent>	Richemont , -< ENT>- watches	Rolex watches are sold through official -< ENT>- and
diamond - <ent>- watch</ent>	bought -< ENT>- watches	bought a -< ENT>- watch
fake -< ENT>- watches	fake -< ENT>- watch	watchmaker -< ENT>- SA
bought -< ENT>- watch	diamond - <ent>- watches</ent>	Ulysse -< ENT>- watches
encrusted -< ENT>- watch	stole -< ENT>- watches	Rolex watches and -< ENT>- watch
stole -< ENT>- watch	buy a -< ENT>- watch	Rolex , -< ENT>- watch
Richemont AG , -< ENT>- watches	jewelry , including -< ENT>- watch	Rolex and - <ent>- watch</ent>
Rolex and -< ENT>- watches	watchmaker -< ENT>	diamond - studded -< ENT>- watch
buy -< ENT>- watches	jewelry , including -< ENT>- watches	diamond - encrusted -< ENT>- watch
Cartier and - <ent>- watches</ent>	stole a - <ent>- watch</ent>	Cartier , and - <ent>- watches</ent>
buy - <ent>- watch</ent>	Rolex watches and -< ENT>	buy a - <ent>- watches</ent>
gold - <ent>- watches</ent>	watchmaker -< ENT>- Group	bought a - <ent>- watches</ent>

Extracted Lists Improve NER Taggers

Training Data	Test-a							
(Tokens)	No List	Unsup. List						
9229	68.27	70.93	72.26					
204657	89.52	84.30	90.48					

Extractions using Context Patterns

Induced Patterns (containing sequence "watch")

gold - <ent>- watch</ent>	Richemont , -< ENT>- watches	Rolex watches are sold through official -< ENT>- and
diamond - <ent>- watch</ent>	bought -< ENT>- watches	bought a -< ENT>- watch
fake -< ENT>- watches	fake -< ENT>- watch	watchmaker -< ENT>- SA
bought - <ent>- watch</ent>	diamond - <ent>- watches</ent>	Ulysse -< ENT>- watches
encrusted - <ent>- watch</ent>	stole -< ENT>- watches	Rolex watches and -< ENT>- watch
stole - <ent>- watch</ent>	buy a -< ENT>- watch	Rolex , -< ENT>- watch
Richemont AG , -< ENT>- watches	jewelry , including -< ENT>- watch	Rolex and - <ent>- watch</ent>
Rolex and -< ENT>- watches	watchmaker -< ENT>	diamond - studded -< ENT>- watch
buy - <ent>- watches</ent>	jewelry , including -< ENT>- watches	diamond - encrusted -< ENT>- watch
Cartier and - <ent>- watches</ent>	stole a - <ent>- watch</ent>	Cartier , and - <ent>- watches</ent>
buy - <ent>- watch</ent>	Rolex watches and -< ENT>	buy a - <ent>- watches</ent>
gold - <ent>- watches</ent>	watchmaker -< ENT>- Group	bought a -< ENT>- watches

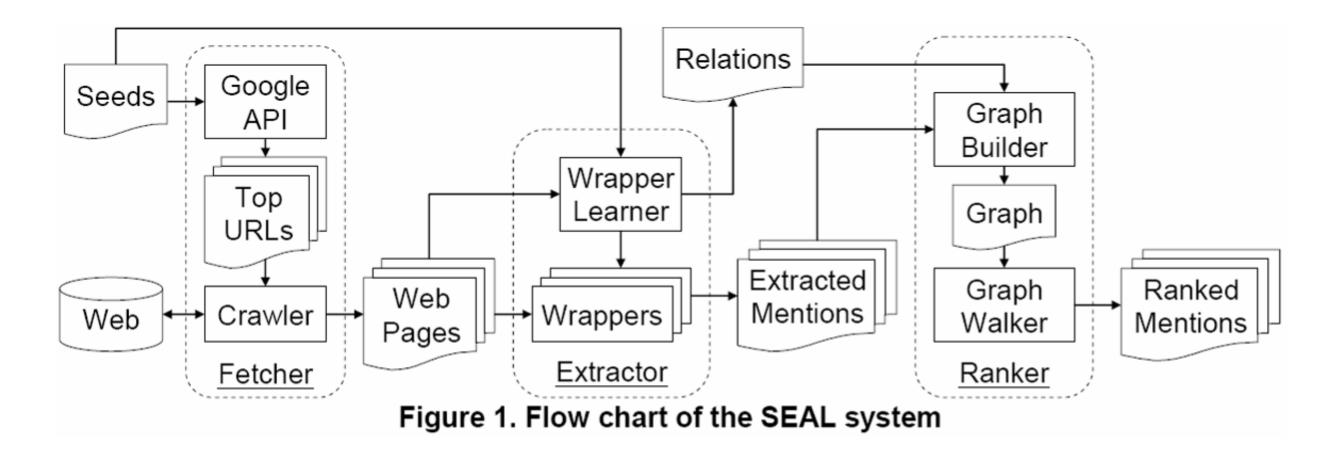
Entities Extracted by Above Patterns (ranked)

Rolex (most confident,) Fossil	Swatch
Cartier	Tag Heuer	Super Bowl
Swiss	Chanel	SPOT
Movado	Tiffany	Sekonda
Seiko	TechnoMarine	Rolexes
Gucci	Franck Muller	Harry Winston
Patek Philippe	Versace	Hampton Spirit
Piaget	Raymond Weil	Girard Perregaux
Omega	Guess	Frank Mueller
Citizen	Croton	David Yurman
Armani	Audemars Piguet	Chopard
DVD	DVDs	Chinese
Breitling	Montres Rolex	Armitron
Tourneau	CD	NFL (least confident)

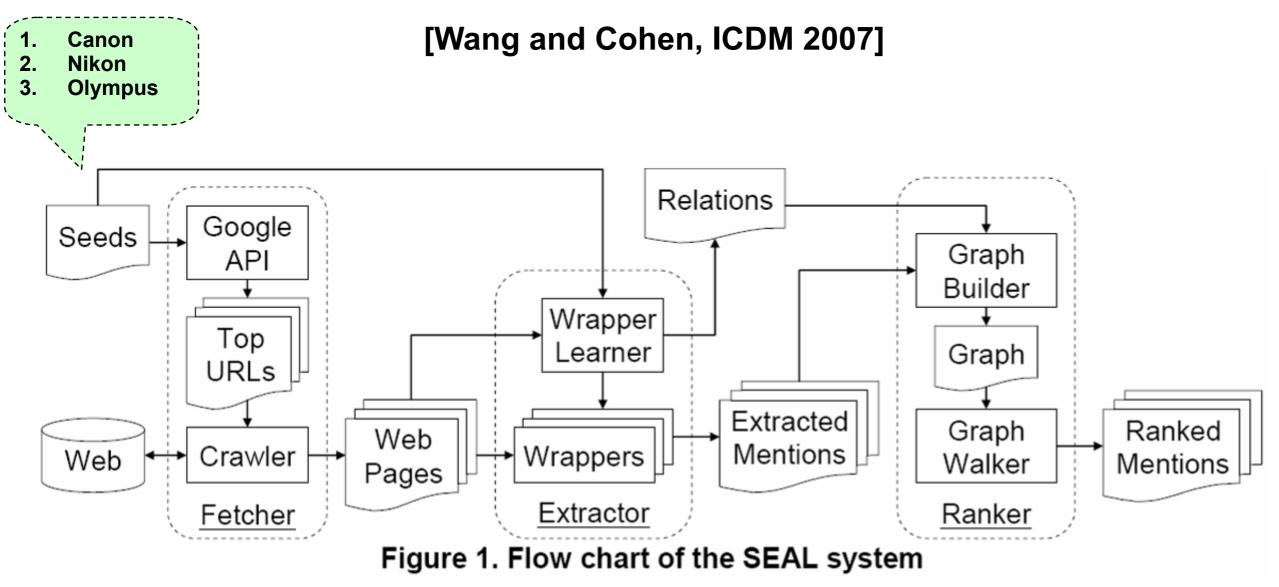
Extracted Lists Improve NER Taggers

Training Data	Test-a							
(Tokens)	No List	Unsup. List						
9229	68.27	70.93	72.26					
204657	89.52	84.30	90.48					

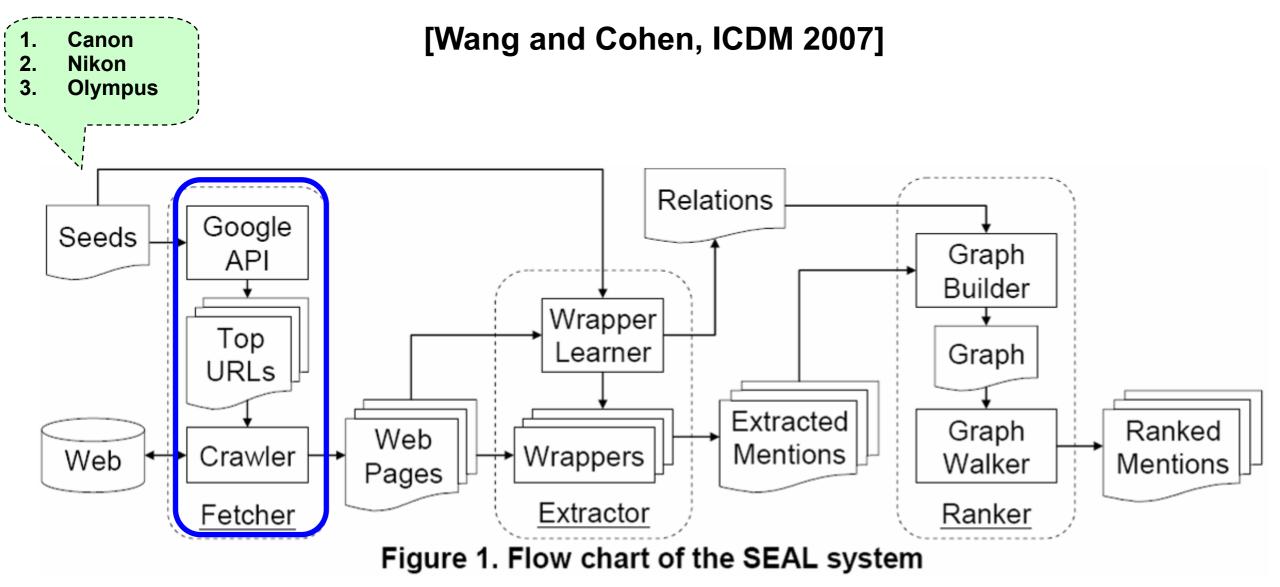
[Wang and Cohen, ICDM 2007]



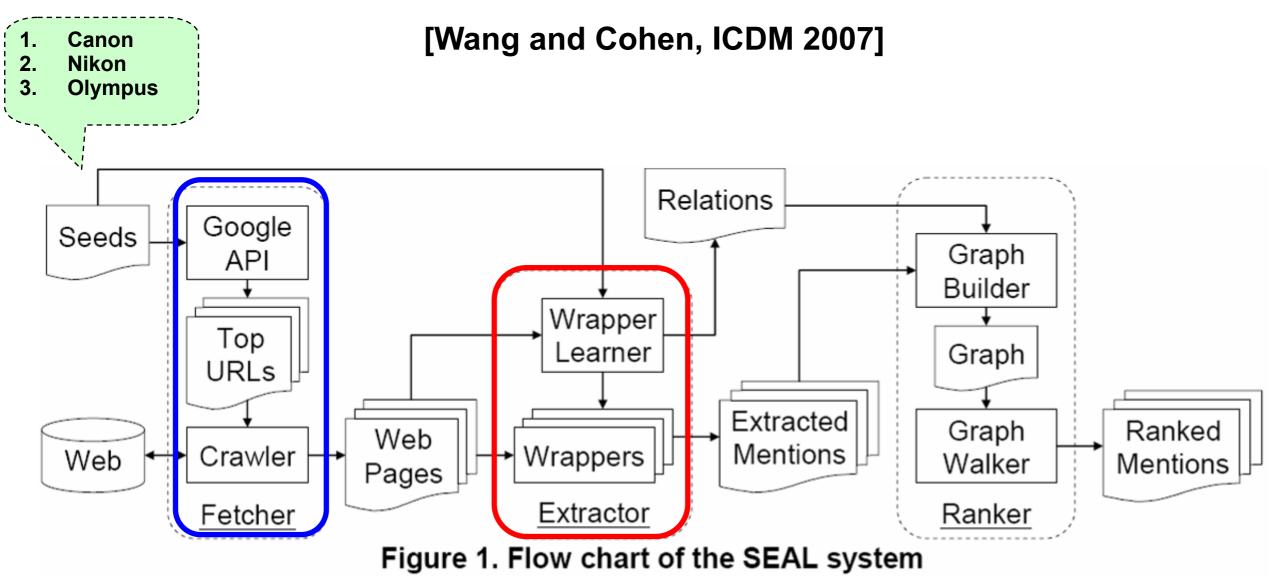
- Fetcher: download web pages from the Web
- Extractor: learn wrappers from web pages
- Ranker: rank entities extracted by wrappers



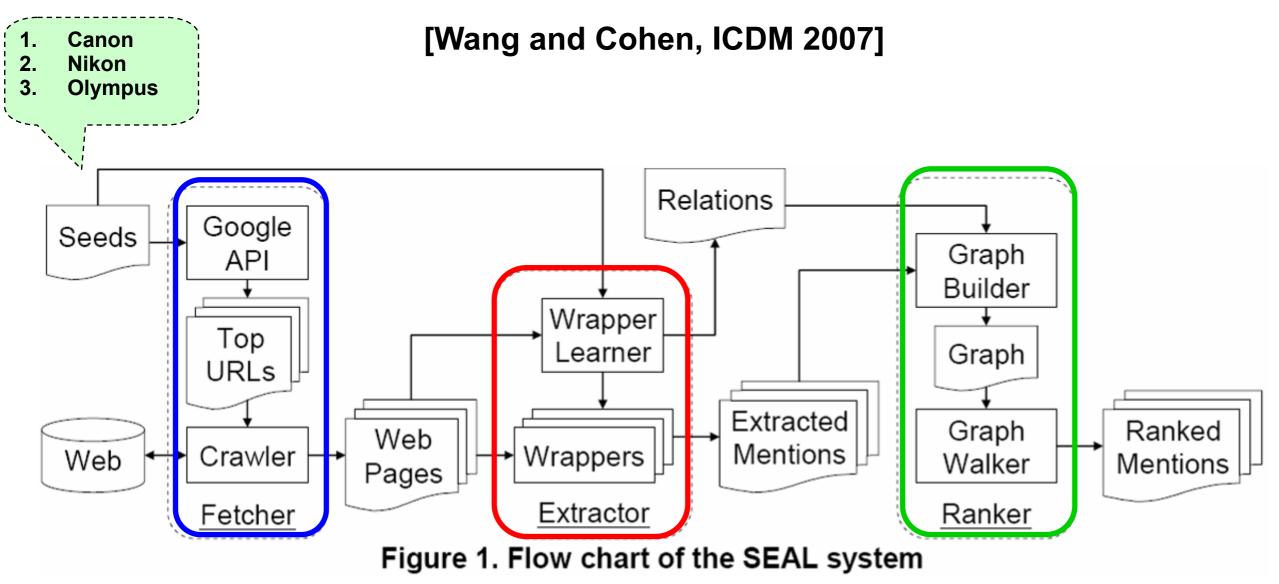
- Fetcher: download web pages from the Web
- Extractor: learn wrappers from web pages
- Ranker: rank entities extracted by wrappers



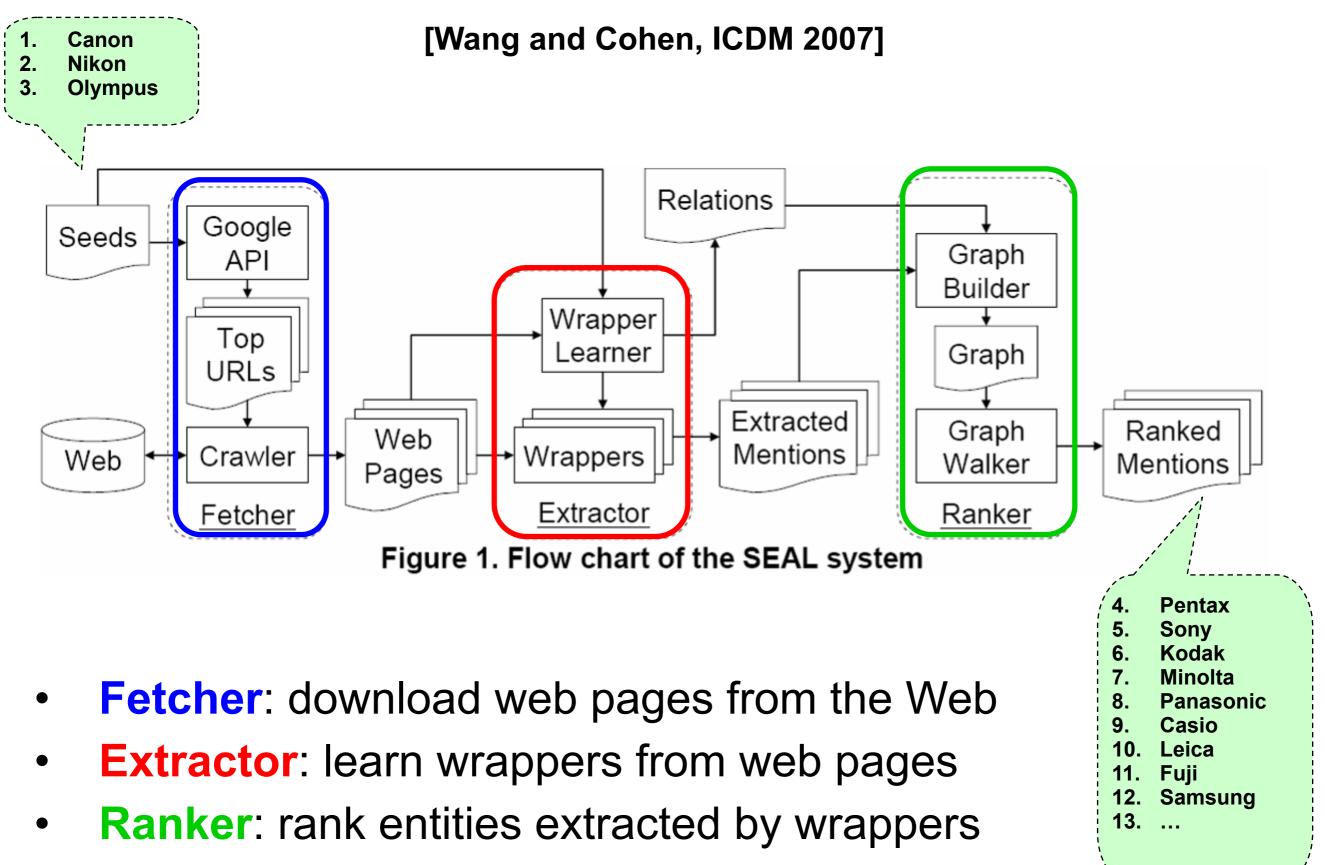
- Fetcher: download web pages from the Web
- Extractor: learn wrappers from web pages
- Ranker: rank entities extracted by wrappers



- Fetcher: download web pages from the Web
- Extractor: learn wrappers from web pages
- Ranker: rank entities extracted by wrappers



- Fetcher: download web pages from the Web
- Extractor: learn wrappers from web pages
- Ranker: rank entities extracted by wrappers



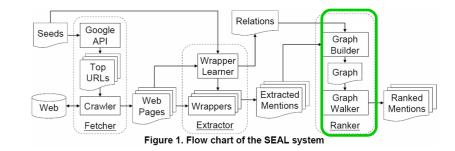


Table 2. Node and relation types							
Source Type	Edge Relation	Target Type					
seeds	find	document					
document	derive find ⁻¹	wrapper seeds					
wrapper	extract derive ⁻¹	mention document					
mention	extract ⁻¹	wrapper					

- A graph consists of a fixed set of...
 - Node Types: {seeds, document, wrapper, mention}
 - Labeled Directed Edges: {find, derive, extract}
 - Each edge asserts that a binary relation *r* holds
 - Each edge has an inverse relation *r*-1 (graph is cyclic)

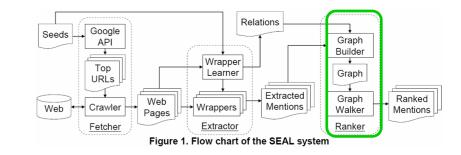
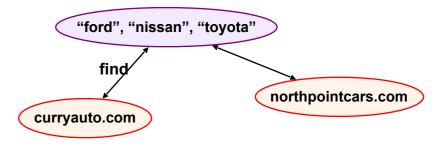
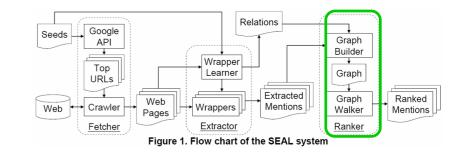
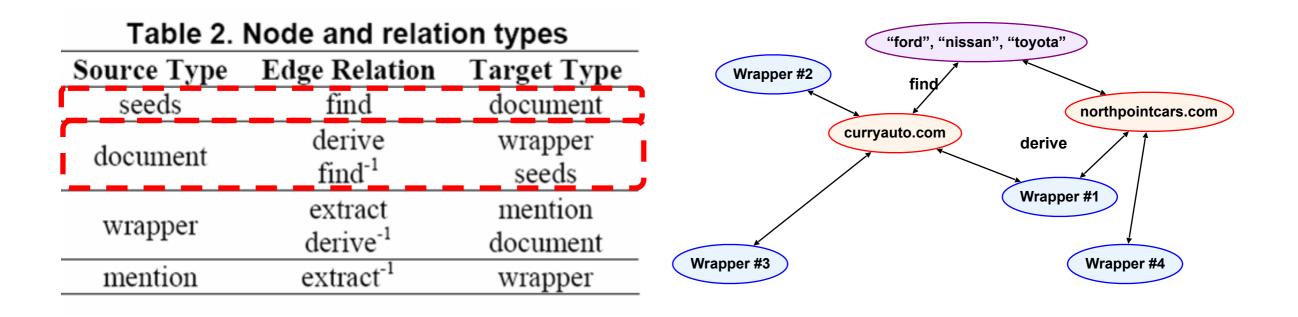


Table 2. Node and relation types								
Source Type	Edge Relation	Target Type document wrapper seeds						
seeds	find							
document	derive find ⁻¹							
wrapper	extract derive ⁻¹	mention document						
mention	extract ⁻¹	wrapper						

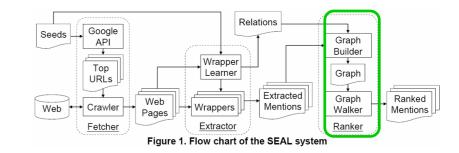


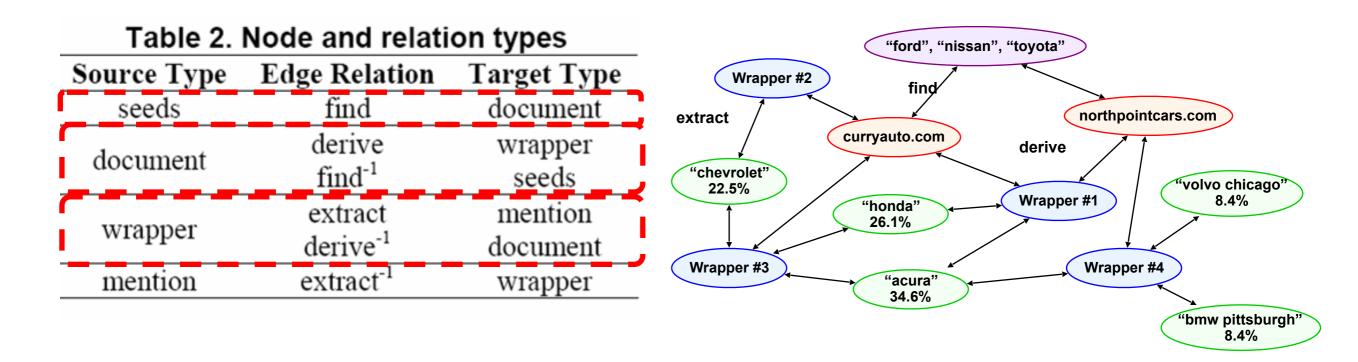
- A graph consists of a fixed set of...
 - Node Types: {seeds, document, wrapper, mention}
 - Labeled Directed Edges: {find, derive, extract}
 - Each edge asserts that a binary relation r holds
 - Each edge has an inverse relation *r*-1 (graph is cyclic)



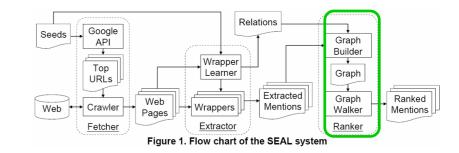


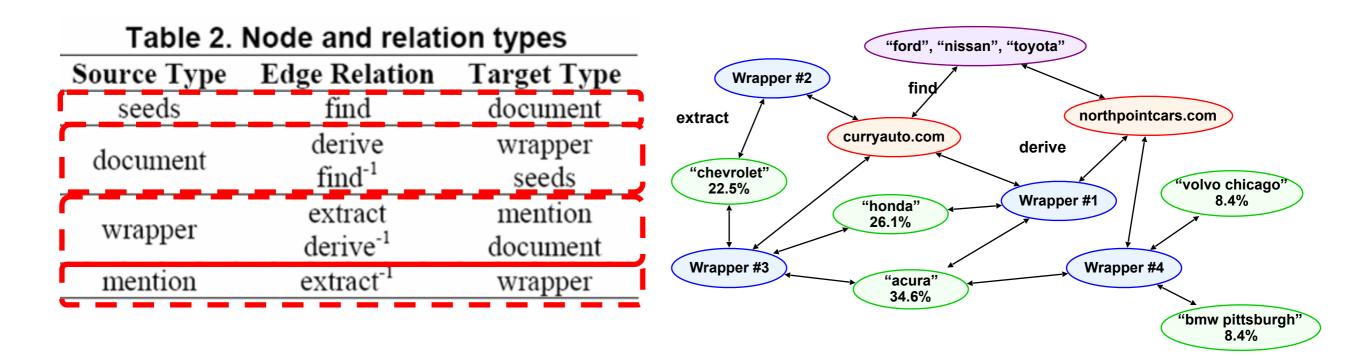
- A graph consists of a fixed set of...
 - Node Types: {seeds, document, wrapper, mention}
 - Labeled Directed Edges: {find, derive, extract}
 - Each edge asserts that a binary relation *r* holds
 - Each edge has an inverse relation *r*-1 (graph is cyclic)





- A graph consists of a fixed set of...
 - Node Types: {seeds, document, wrapper, mention}
 - Labeled Directed Edges: {find, derive, extract}
 - Each edge asserts that a binary relation *r* holds
 - Each edge has an inverse relation *r*-1 (graph is cyclic)





- A graph consists of a fixed set of...
 - Node Types: {seeds, document, wrapper, mention}
 - Labeled Directed Edges: {find, derive, extract}
 - Each edge asserts that a binary relation *r* holds
 - Each edge has an inverse relation *r*-1 (graph is cyclic)

Top three mentions are the seeds

ŧ	#	Entity	#	Entity	#	Entity	#	Entity	#	Entity	#	Entity	#	Entity
ī	1	kdd	1	andrew mccallum	1	survivor	1	sam's club	1	梅花	1	睡美人	1	ドラえもん
1	2	icml	2	michael collins	2	amazing race	2	walmart	2	牡丹花	2	灰姑娘	2	ハローキティ
1	3	icdm	3	john lafferty	3	american idol	3	home depot	3	杜鵑花	3	白雪公主	3	ポケモン
4	4	ijcai	4	naftali tishby	4	big brother	4	target	4	蘭花	4	小紅帽	4	スヌービー
1	5	aaai	5	fernando pereira	5	the apprentice	5	sears	5	茉莉花	5	美人魚	5	くまのブーさん
(6	ecml	6	zoubin ghahramani	6	the bachelor	6	circuit city	6	月季花	6	小美人魚	6	アンバンマン
1	7	nips	7	daphne koller	7	the mole	7	best buy	7	梔子花	7	美女與野獸	7	ムーミン
4	В	sdm	8	thomas hofmann	8	joe millionaire	8	ace hardware	8	菊花	8	花木蘭	8	ワンビース
9	9	pkdd	9	thorsten joachims	9	average joe	9	office depot	9	瓊花	9	青蛙王子	9	シナモロール
1	0	sigir	10	david heckerman	10	reality tv	10	kmart	10	桃花	10	貝兒	10	ケロロ軍曹
1	1	pakdd	11	nir friedman	11	nashville star	11	drugstore.com	11	玉蘭花	11	木偶奇過記	11	ミッキーマウス
1	2	colt	12	tom mitchell	12	dancing with the stars	12	sephora	12	海棠花	12	糖果屋	12	リラックマ
1	3	cikm	13	dan roth	13	surreal life	13	the sports authority	13	水仙花	13	三隻小豬	13	ビングー
1	4	ida	14	william w. cohen	14	the bachelorette	14	staples	14	桂花	14	茉莉公主	14	ビーターラビット
1	5	uai	15	mark craven	15	road rules	15	blockbuster	15	杏花	15	茉莉	15	ミッフィー
1	6	ilp	16	roni rosenfeld	16	fear factor	16	rei	16	合歡花	16	愛麗絲夢遊仙境	16	トトロ
1	7	stoc	17	david mcallester	17	paradise hotel	17	toys r us	17	繡球花	17	寶嘉康蒂	17	マイメロディ
1	8	www	18	yoram singer	18	america's next top model	18	nordstrom	18	櫻花	18	長髮姑娘	18	機関車トーマス
1	9	alt	19	michael i. jordan	19	lost	19	dick's sporting goods	19	虞美人花	19	人魚公主	19	セサミストリート
2	20	icde	20	eugene charniak	20	joe schmo	20	lowes	20	青黛花	20	紅舞鞋	20	ウルトラマン
2	1 :	sigmod	21	amir globerson	21	extreme makeover	21	aafes	21	十姊妹花	21	唐老鴨	21	ディズニー
2	2	ecai	22	yiming yang	22	temptation	22	fred meyer	22	木棉花	22	長靴貓	22	恐竜キング
2	3	dawak	23	yoshua bengio	23	celebrity mole	23	orchard supply	23	眞珠蘭花	23	拇指神童	23	ムシキング
2	4	cvpr	24	sridhar mahadevan	24	desperate housewives	24	handy hardware	24	楊花	24	小熊維尼	24	おじゃる丸

What Other Musicians Would Fans of the Album Listen to:

Storytelling musicians come to mind. Musicians such as Johnny Cash, and Woodie Guthrie.

What is Distinctive About this Release?:

Every song on the album has its own unique sound. From the fast paced *That Texas Girl* to the acoustic

[van Durme and Pasca, AAAI 2008]

- Uses "<Class> such as <Instance>" patterns
- Extracts both class (musician) and instance (Johnny Cash)

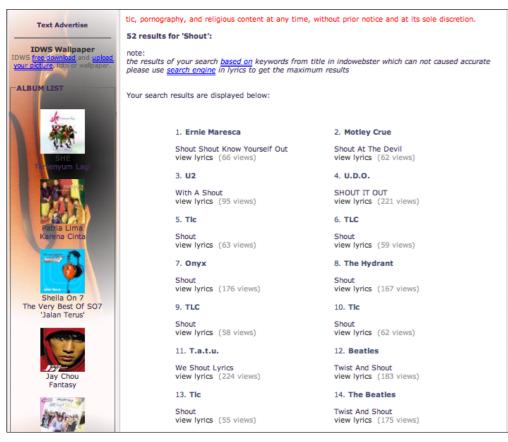
What Other Musicians Would Fans of the Album Listen to:

Storytelling musicians come to mind. Musicians such as Johnny Cash, and Woodie Guthrie.

What is Distinctive About this Release?: Every song on the album has its own unique sound. From the fast paced *That Texas Girl* to the acoustic

[van Durme and Pasca, AAAI 2008]

- Uses "<Class> such as <Instance>" patterns
- Extracts both class (musician) and instance (Johnny Cash)



Extractions from HTML lists and tables

- SEAL [Wang and Cohen, ICDM 2007]
- WebTables [Cafarella et al.,VLDB 2008],
 I 54 million HTML tables

What Other Musicians Would Fans of the Album Listen to:

Storytelling musicians come to mind. Musicians such as Johnny Cash, and Woodie Guthrie.

[van Durme and Pasca, AAAI 2008]

Uses "<Class> such as <Instance>"

What is Disti Every song on fast paced That

Text Advertis

Pattern-based methods are usually tuned for high-precision, resulting in low coverage

ST VI

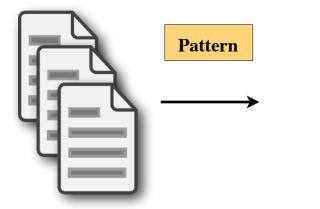
Can we combine extractions from all methods (and sources) to improve coverage?

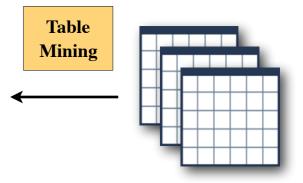
view lyrics (95 views)	view lyrics (221 views)
5. Tlc	6. TLC
Shout view lyrics (63 views)	Shout view lyrics (59 views)
7. Onyx	8. The Hydrant
Shout view lyrics (176 views)	Shout view lyrics (167 views)
9. TLC	10. Tlc
Shout view lyrics (58 views)	Shout view lyrics (62 views)
11. T.a.t.u.	12. Beatles
We Shout Lyrics view lyrics (224 views)	Twist And Shout view lyrics (183 views)
13. Tlc	14. The Beatles
Shout view lyrics (55 views)	Twist And Shout view lyrics (175 views)

- SEAL [Wang and Cohen, ICDM 2007]
- WebTables [Cafarella et al., VLDB 2008], 154 million HTML tables

Class-instance Acquisition using Graph-based SSL

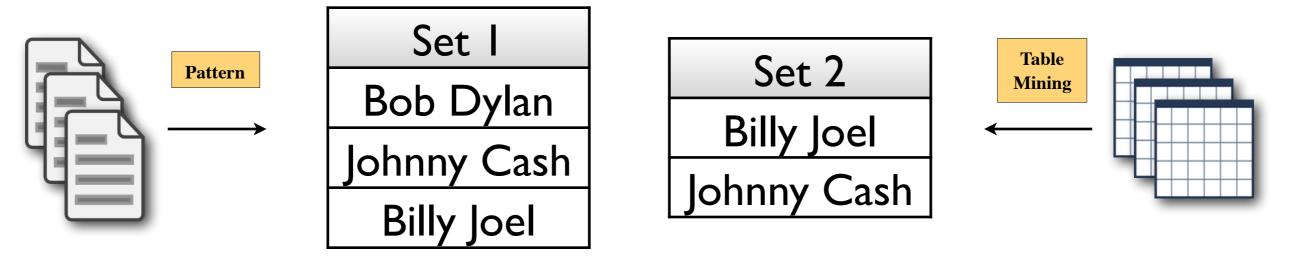
[Talukdar et al., EMNLP 2008, 2010]

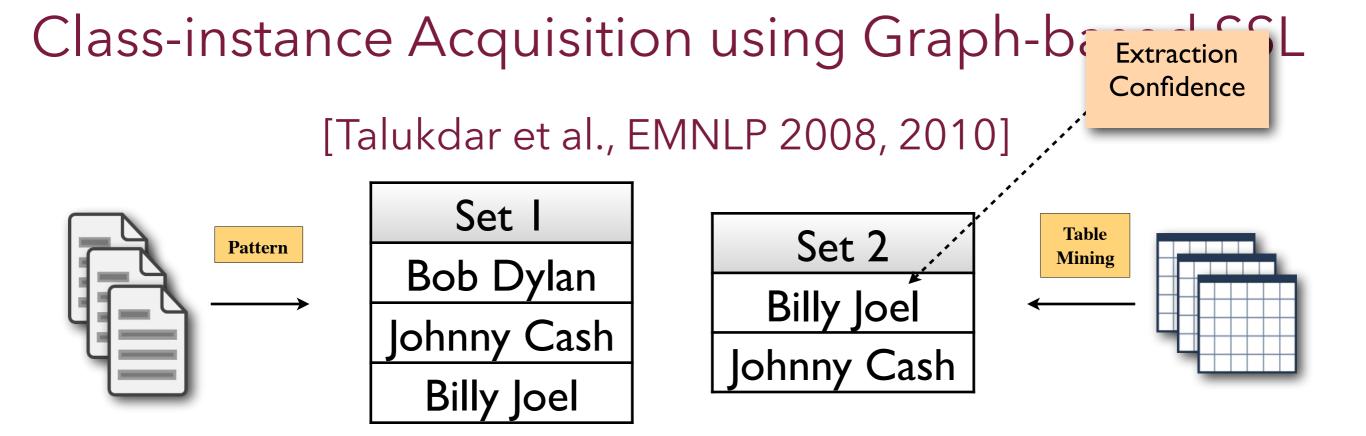


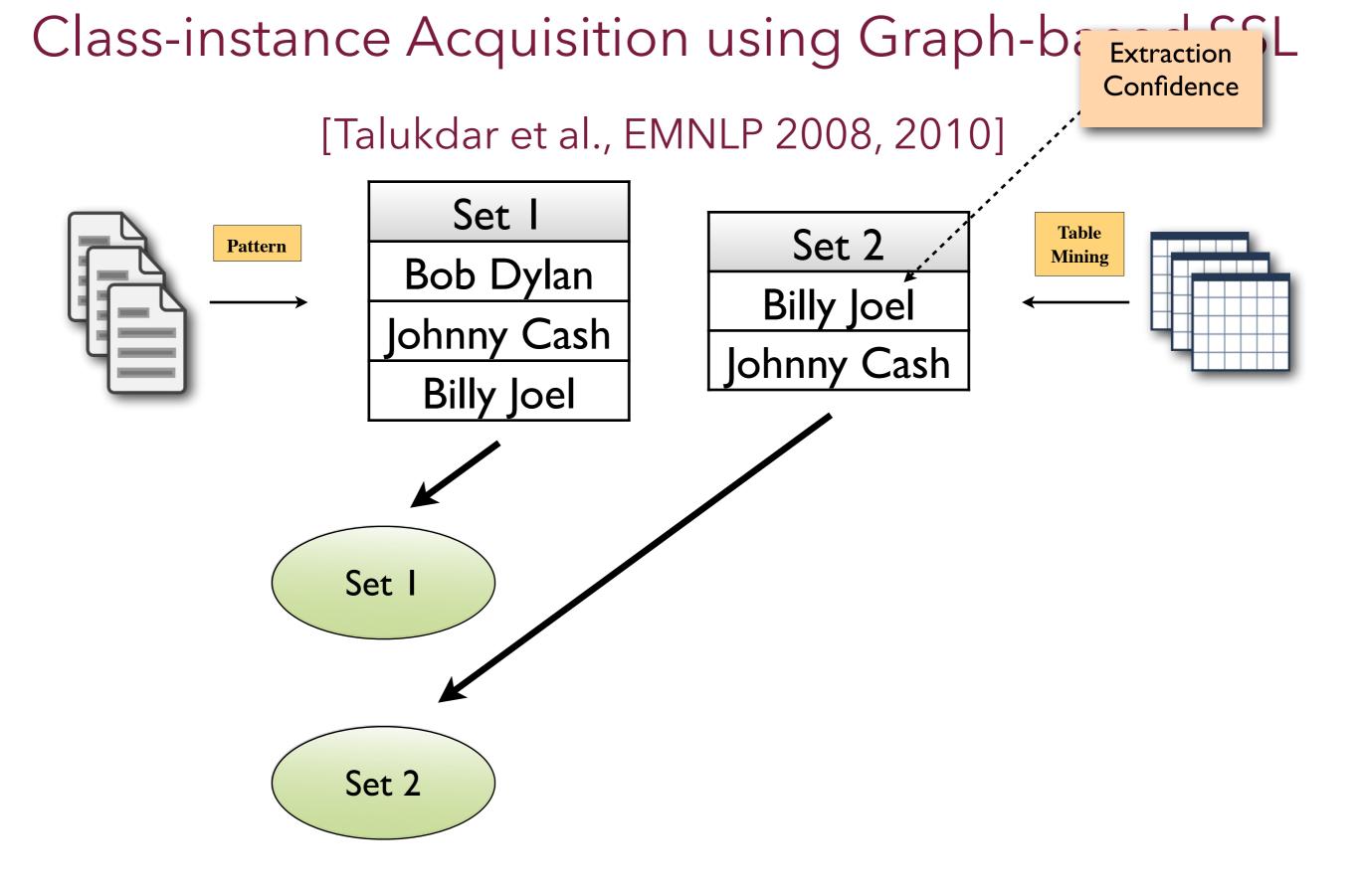


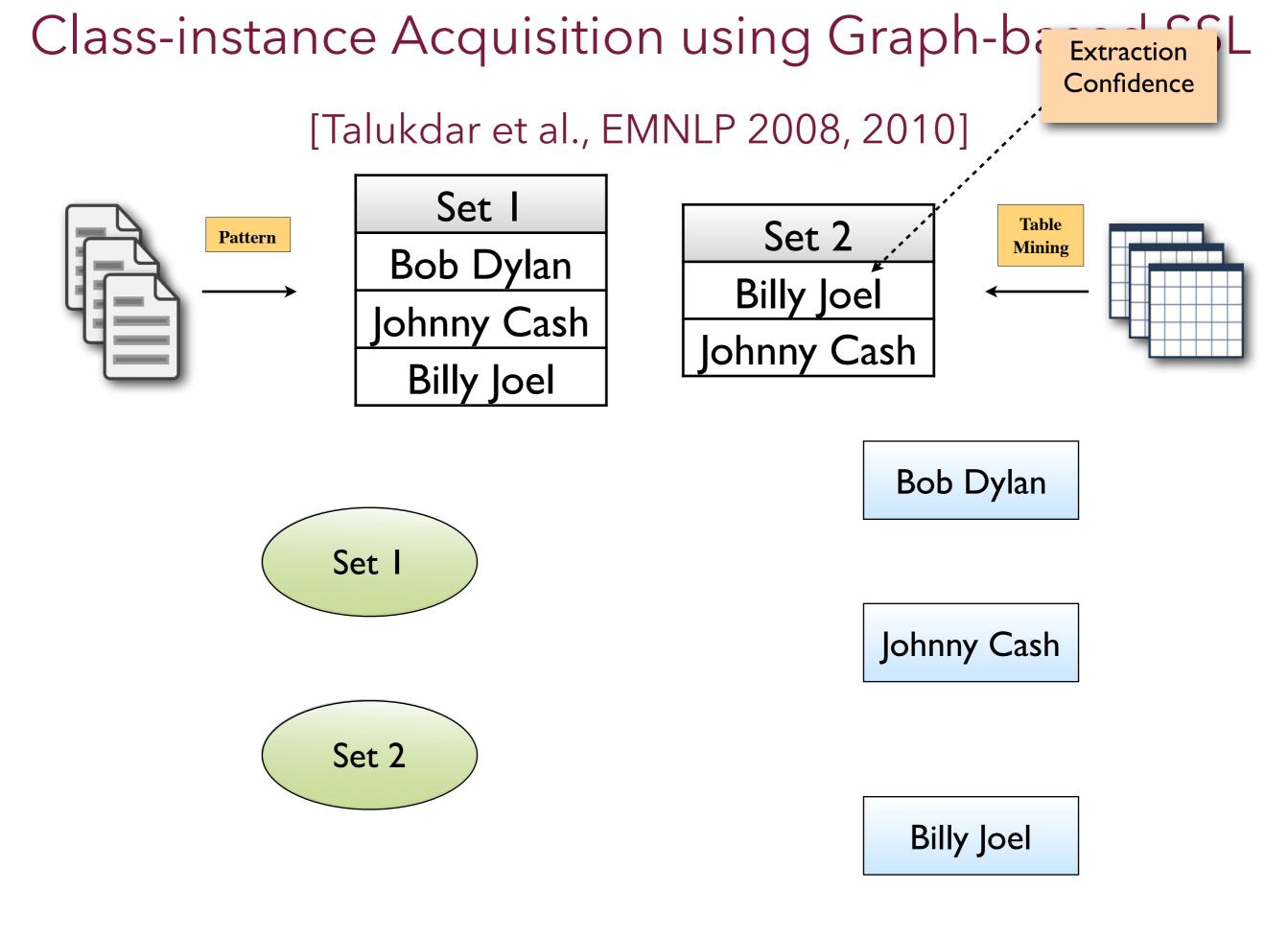
Class-instance Acquisition using Graph-based SSL

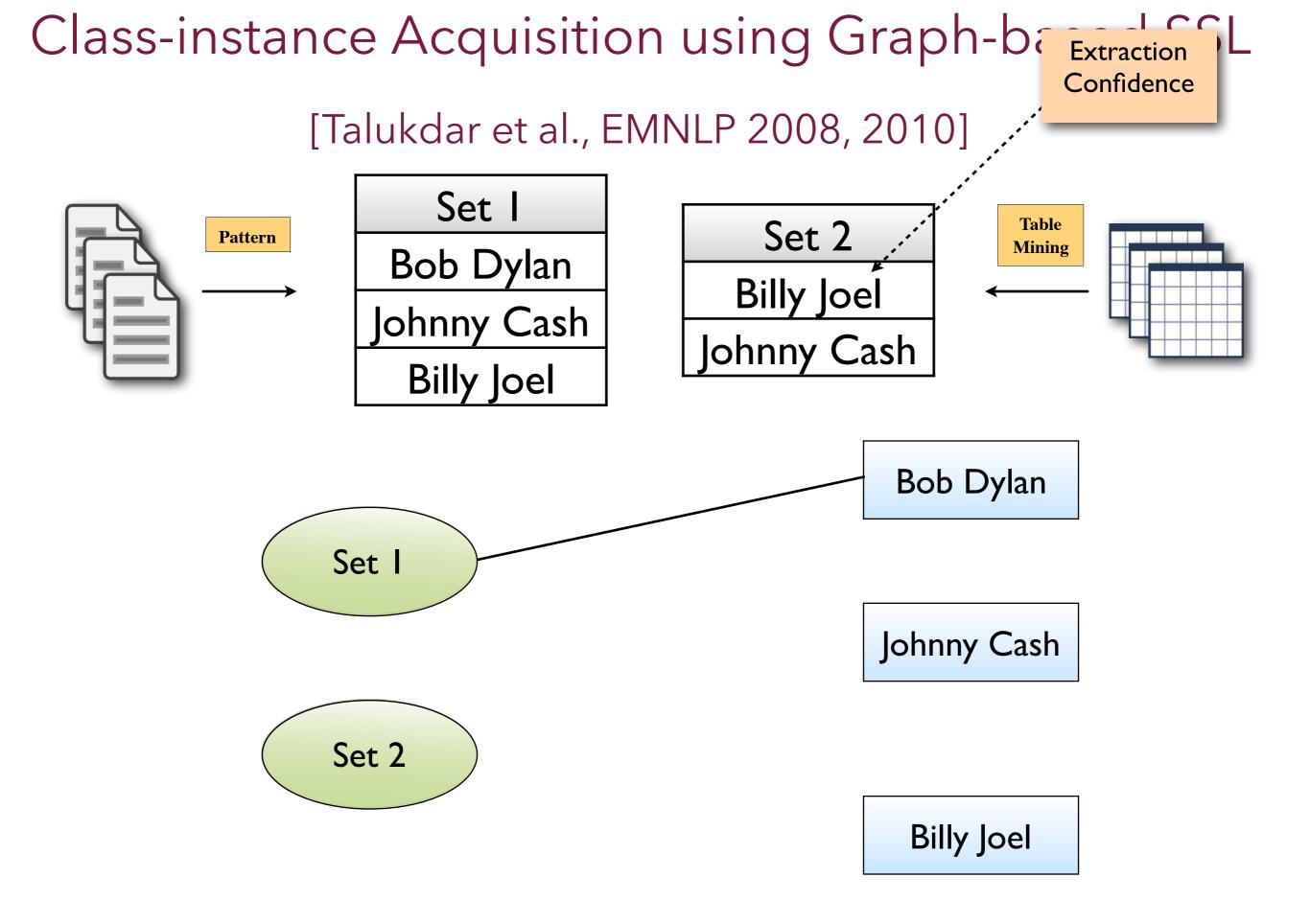
[Talukdar et al., EMNLP 2008, 2010]

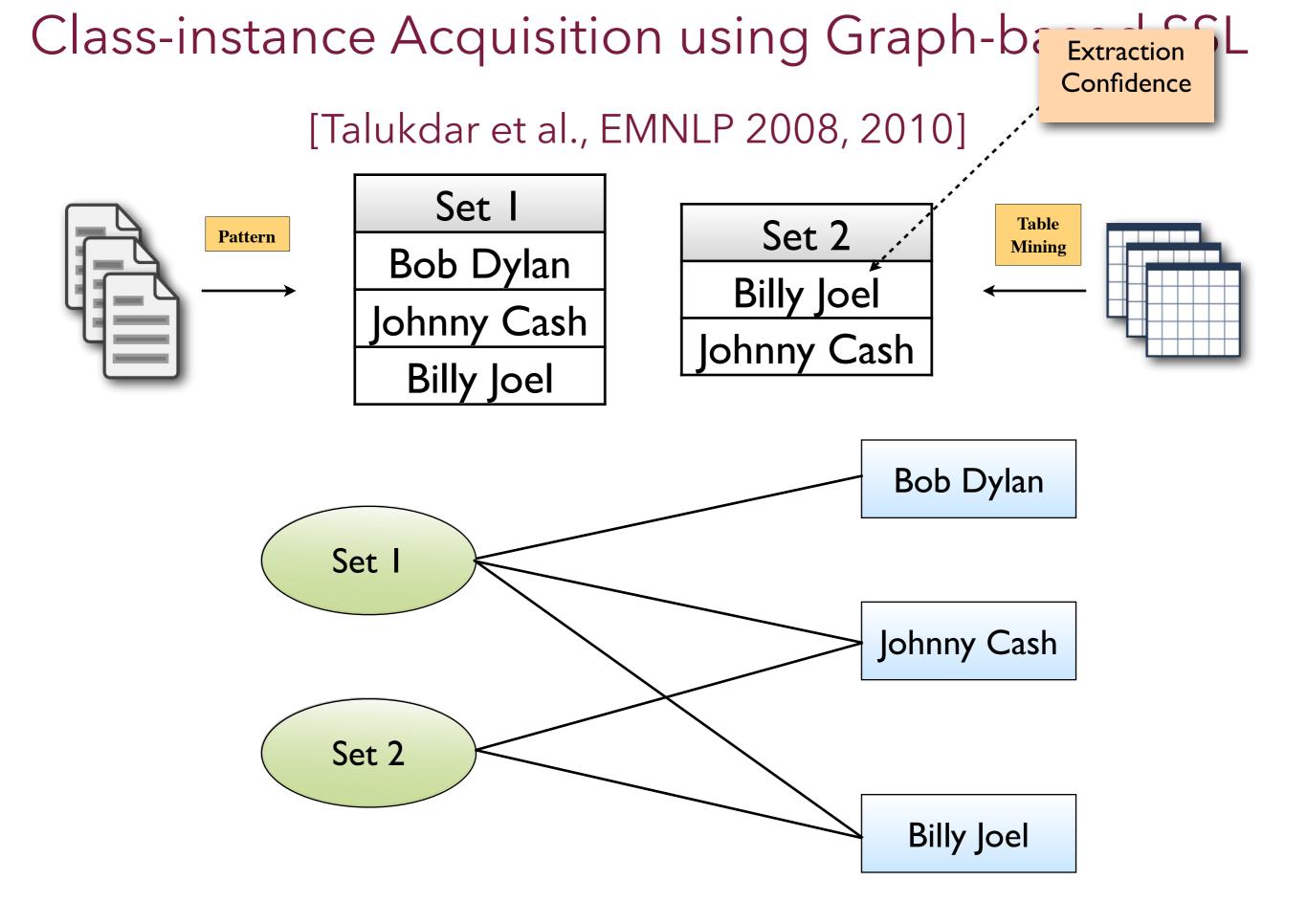


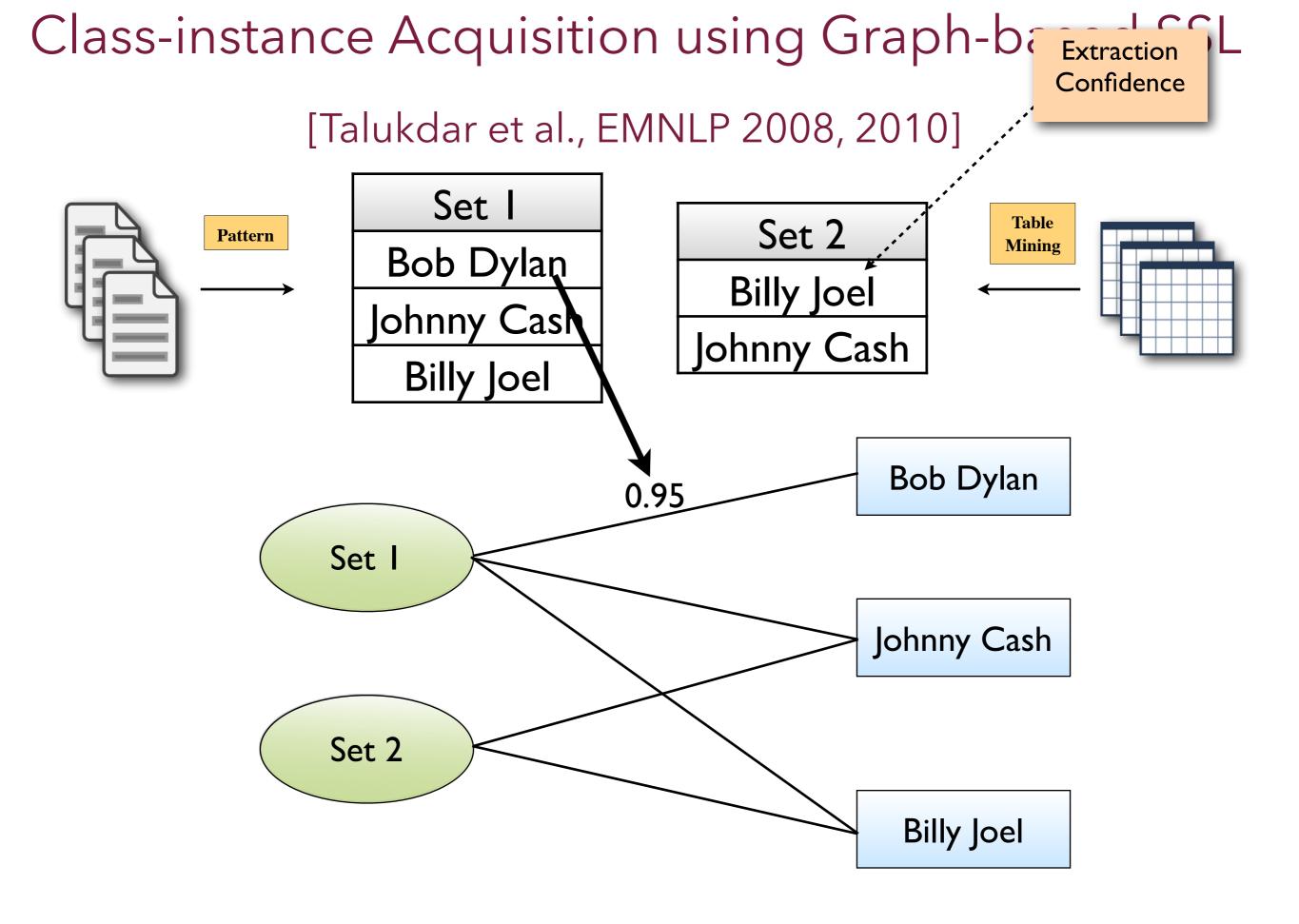


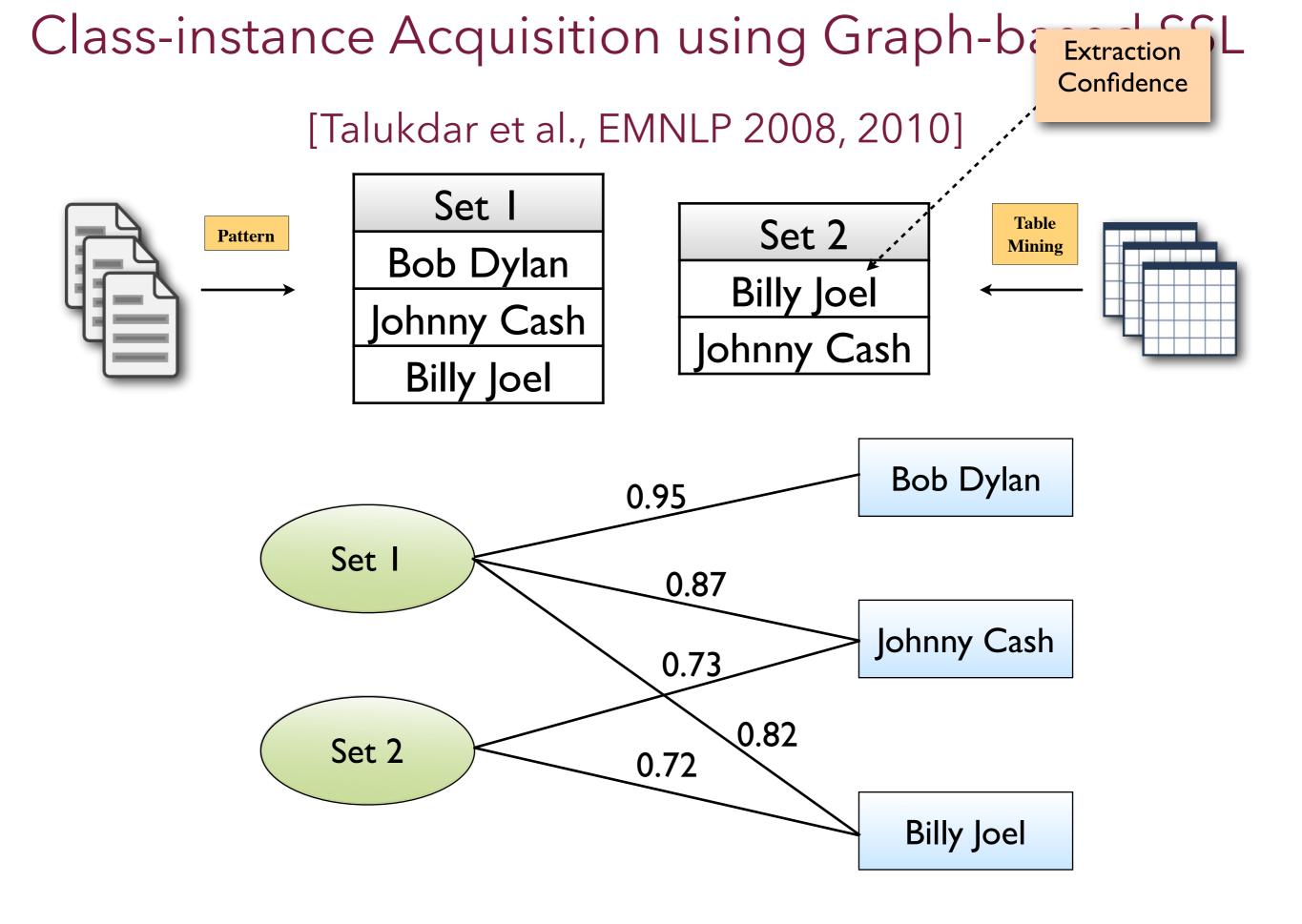


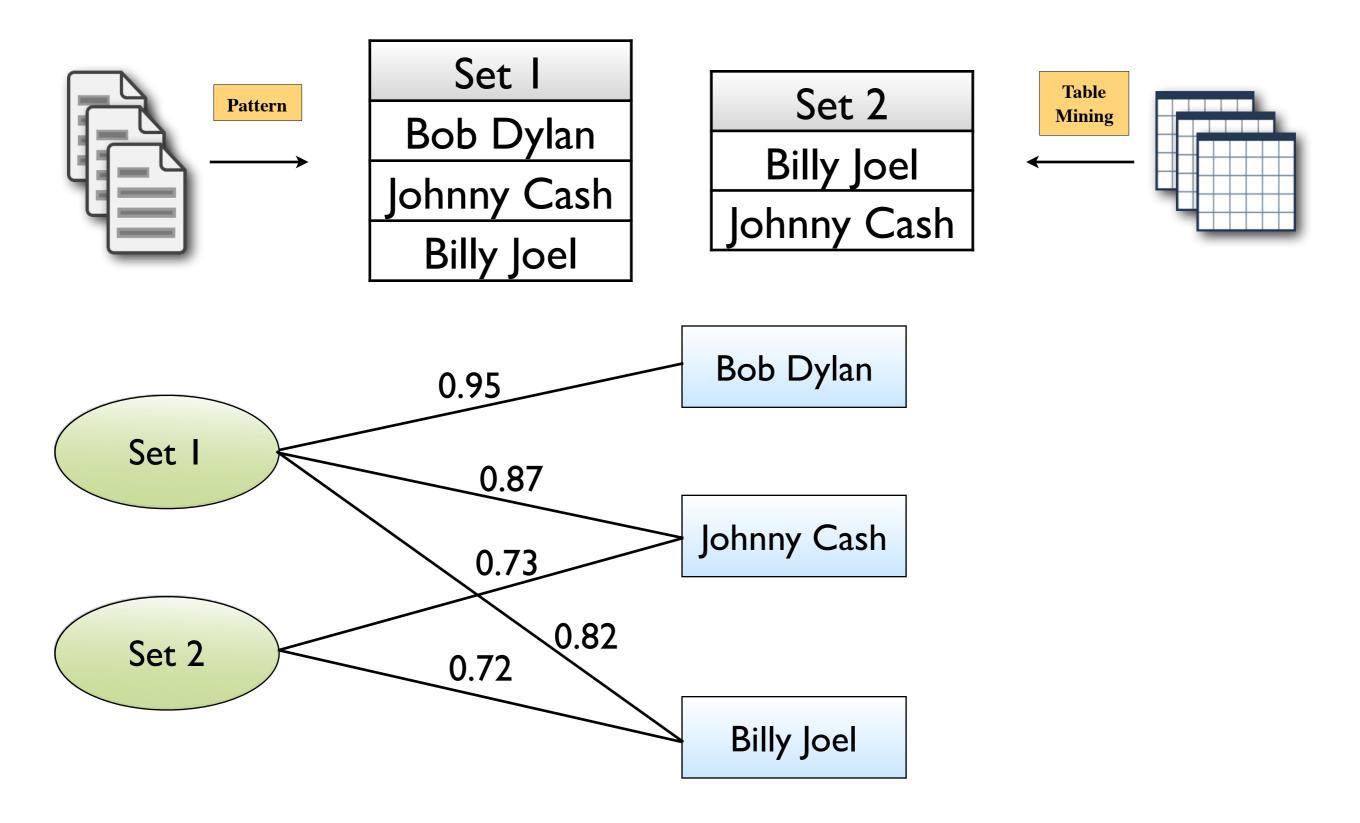


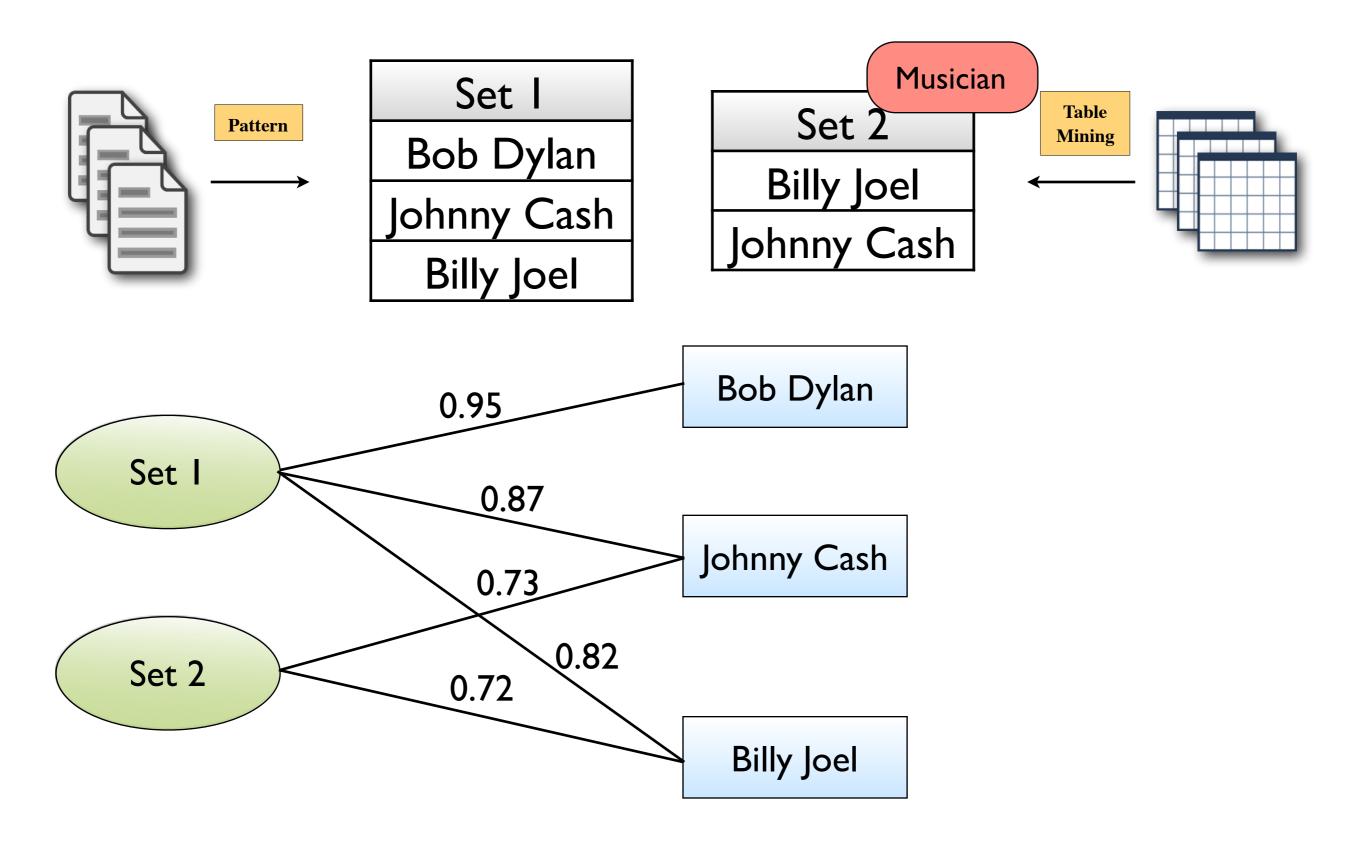


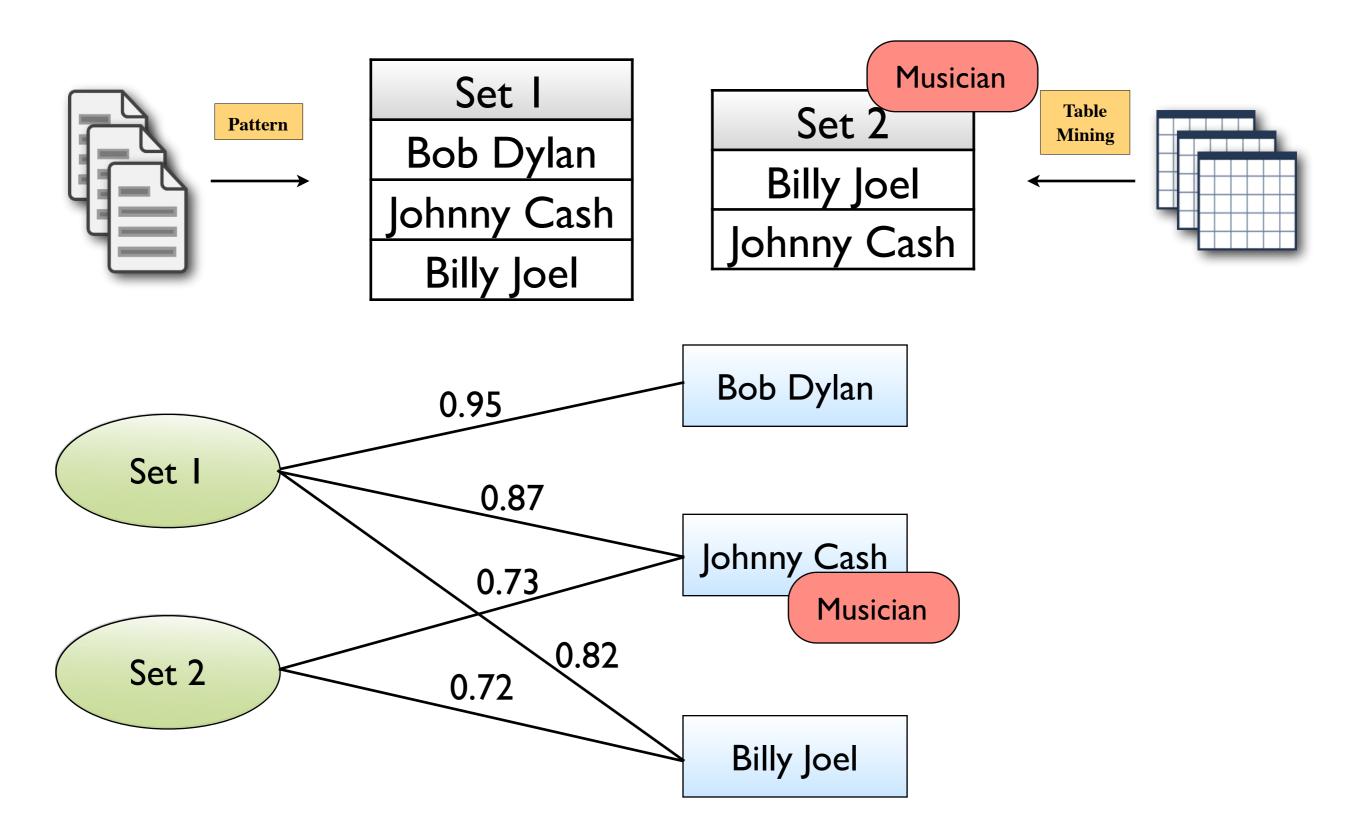


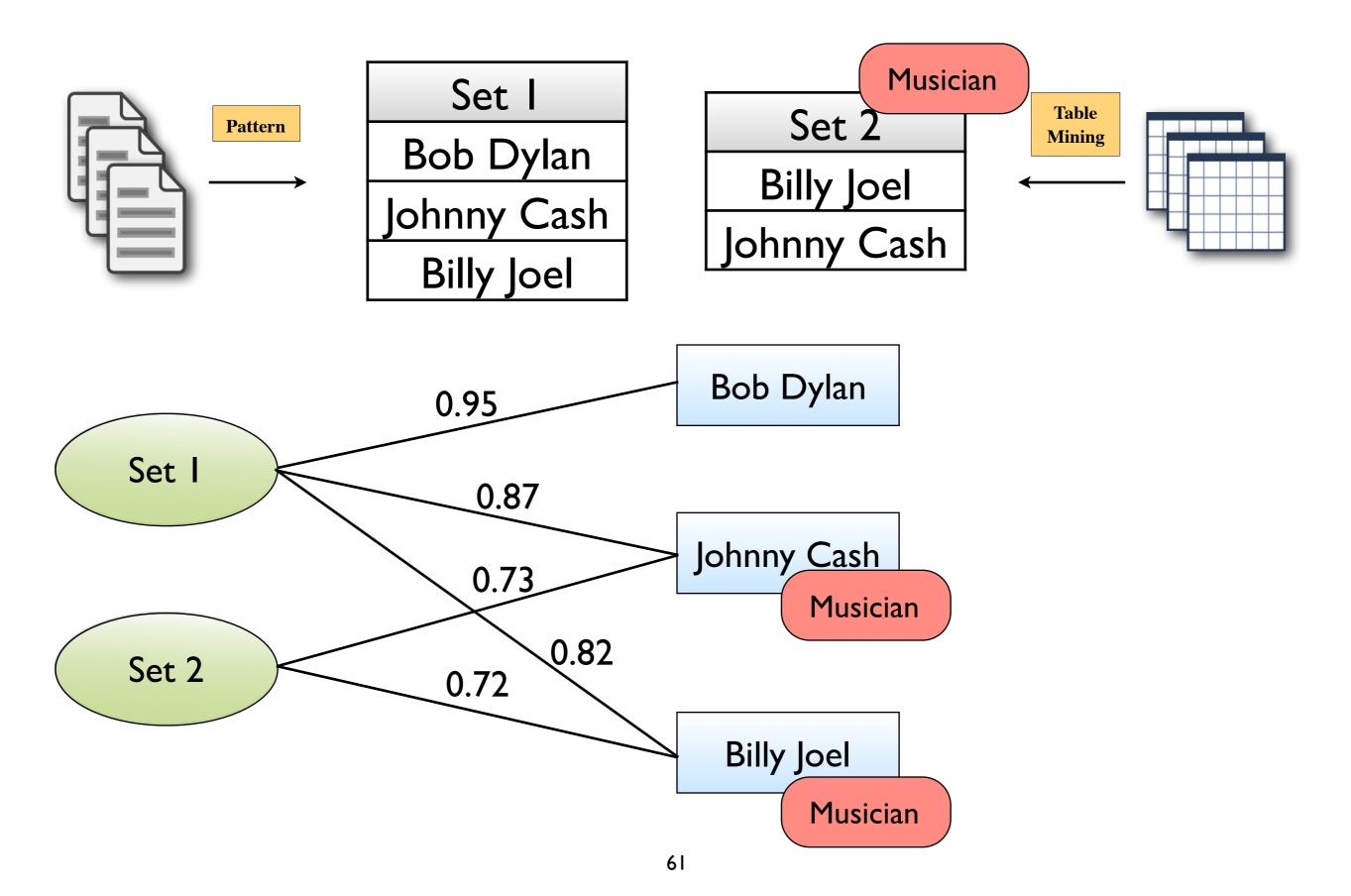


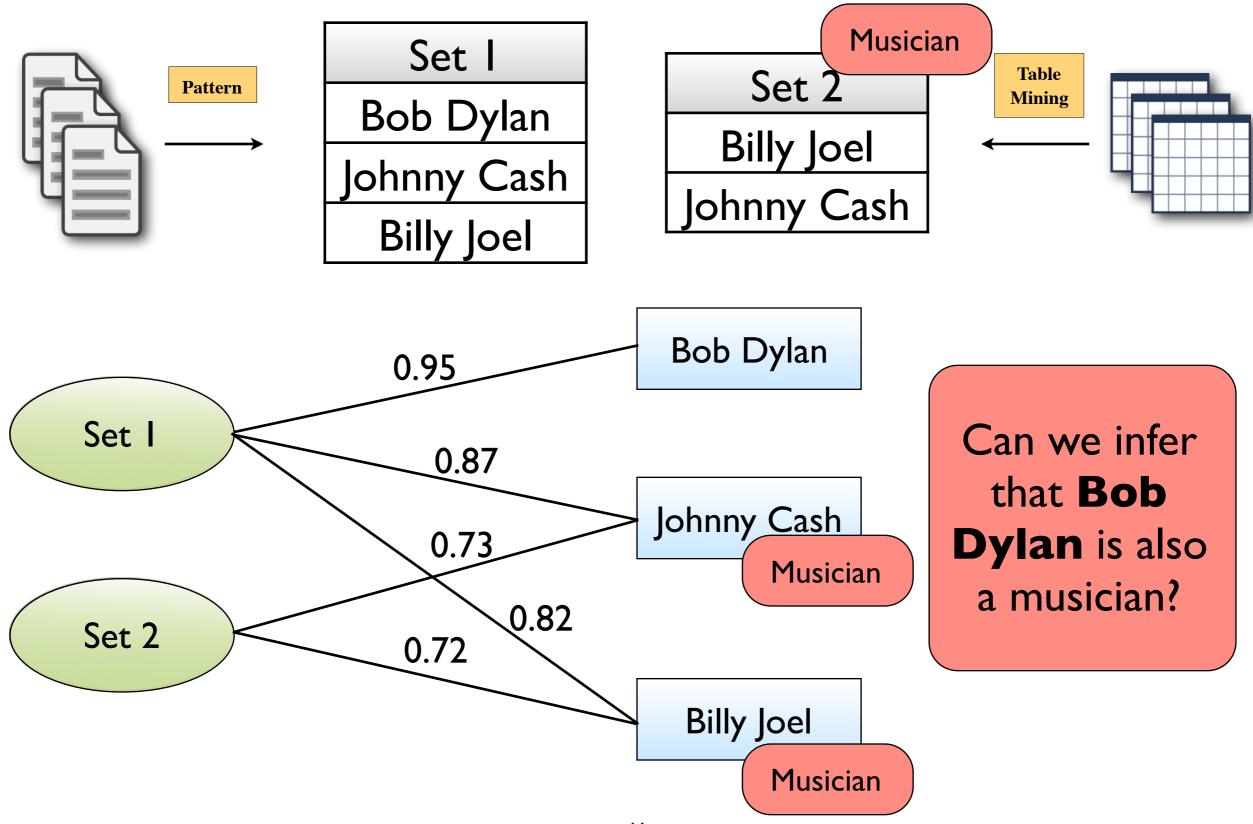


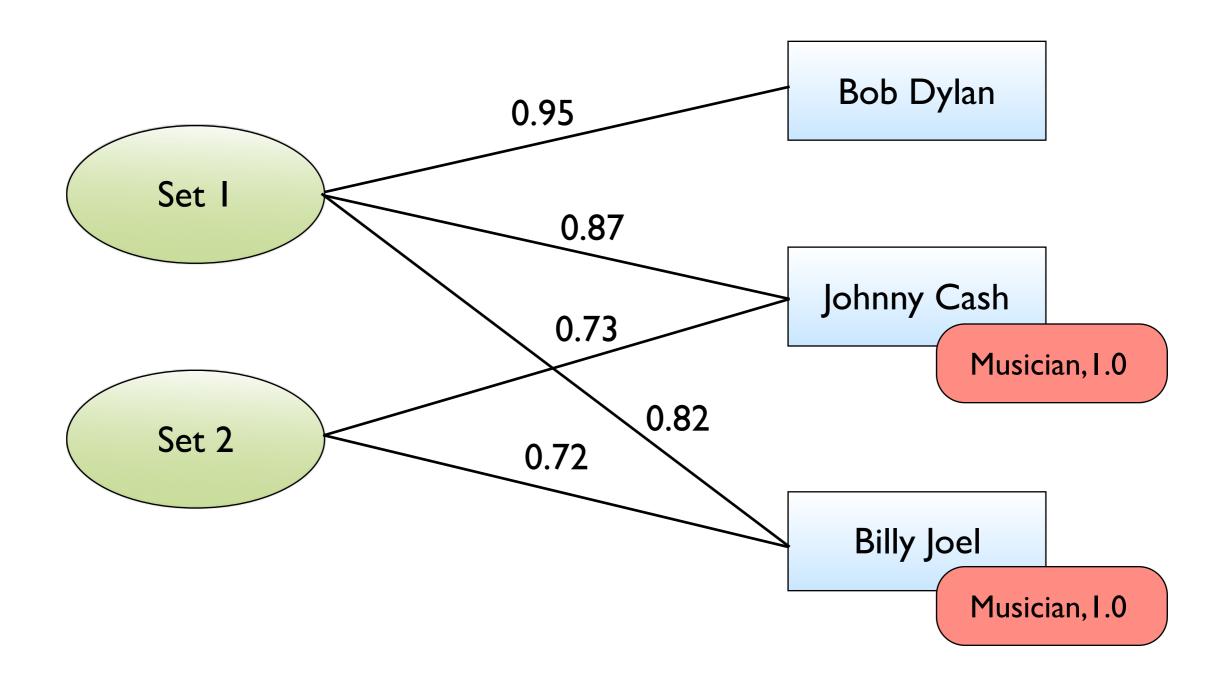


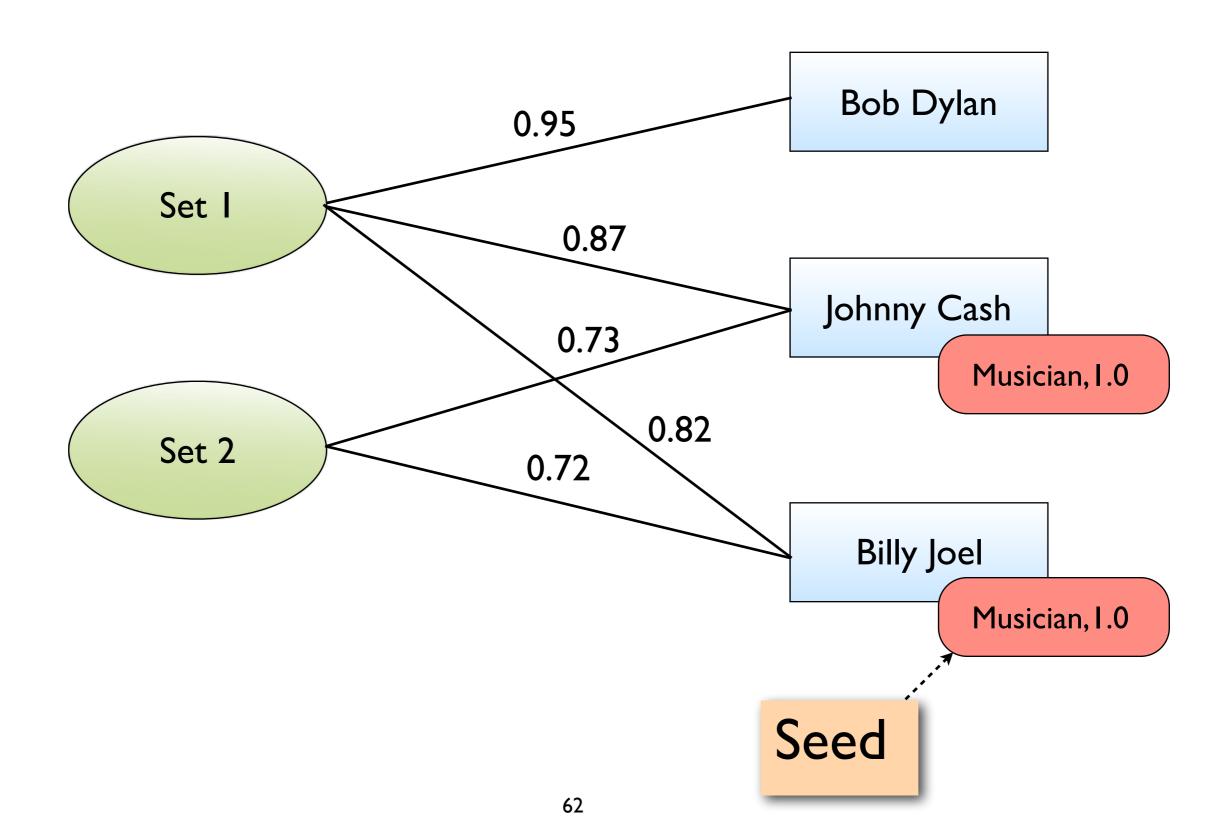


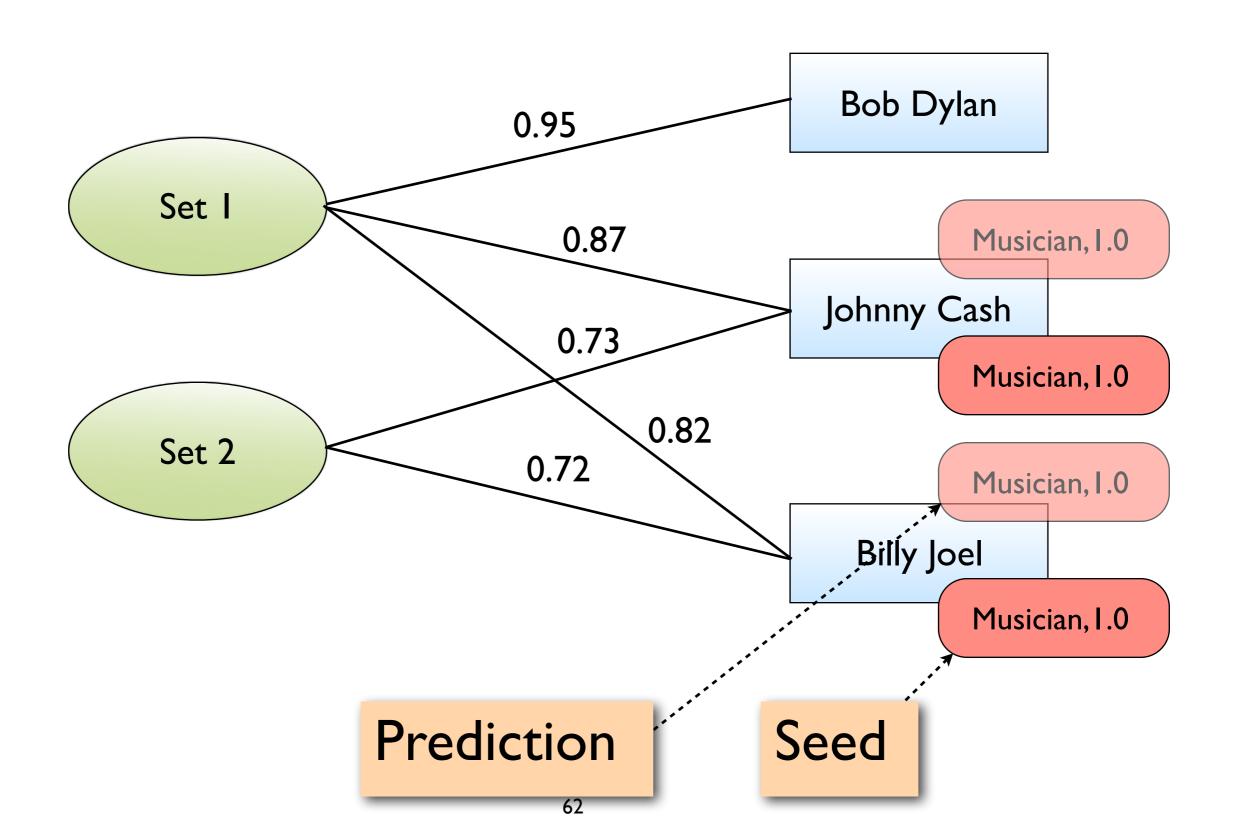


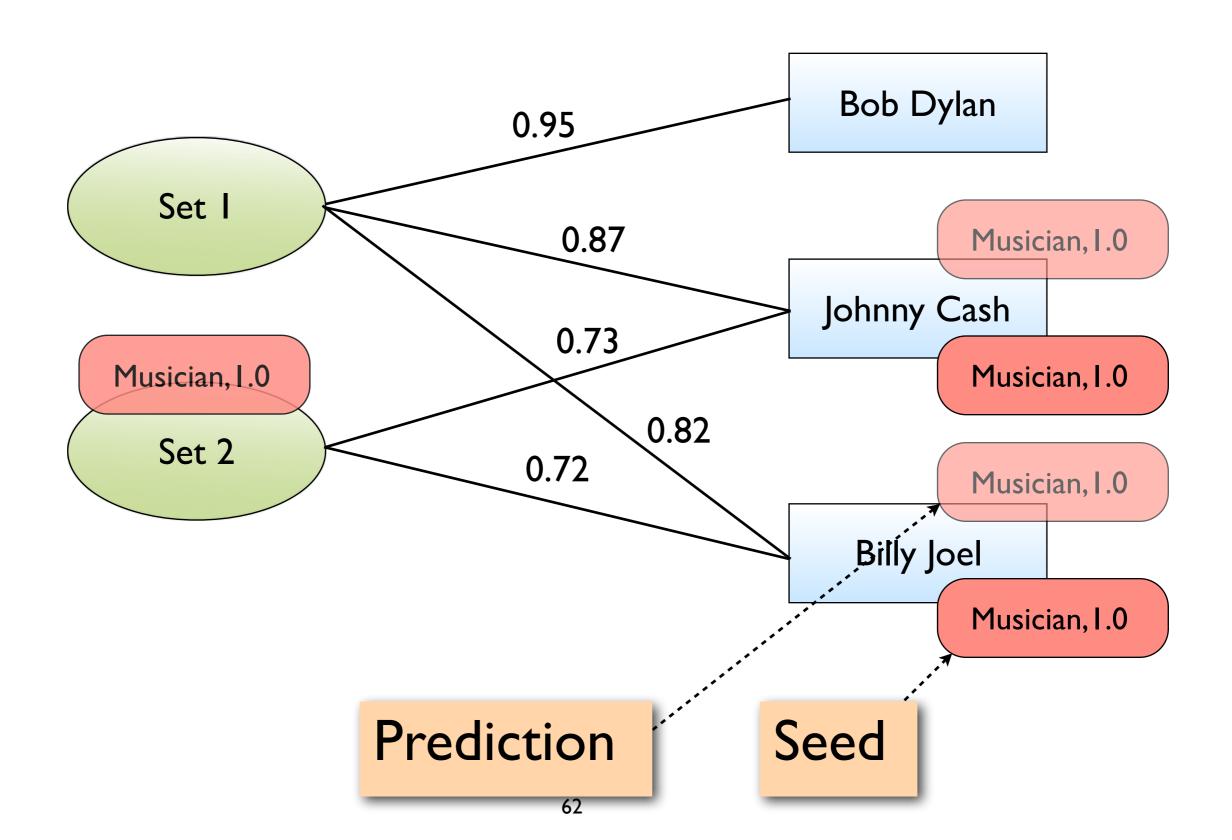


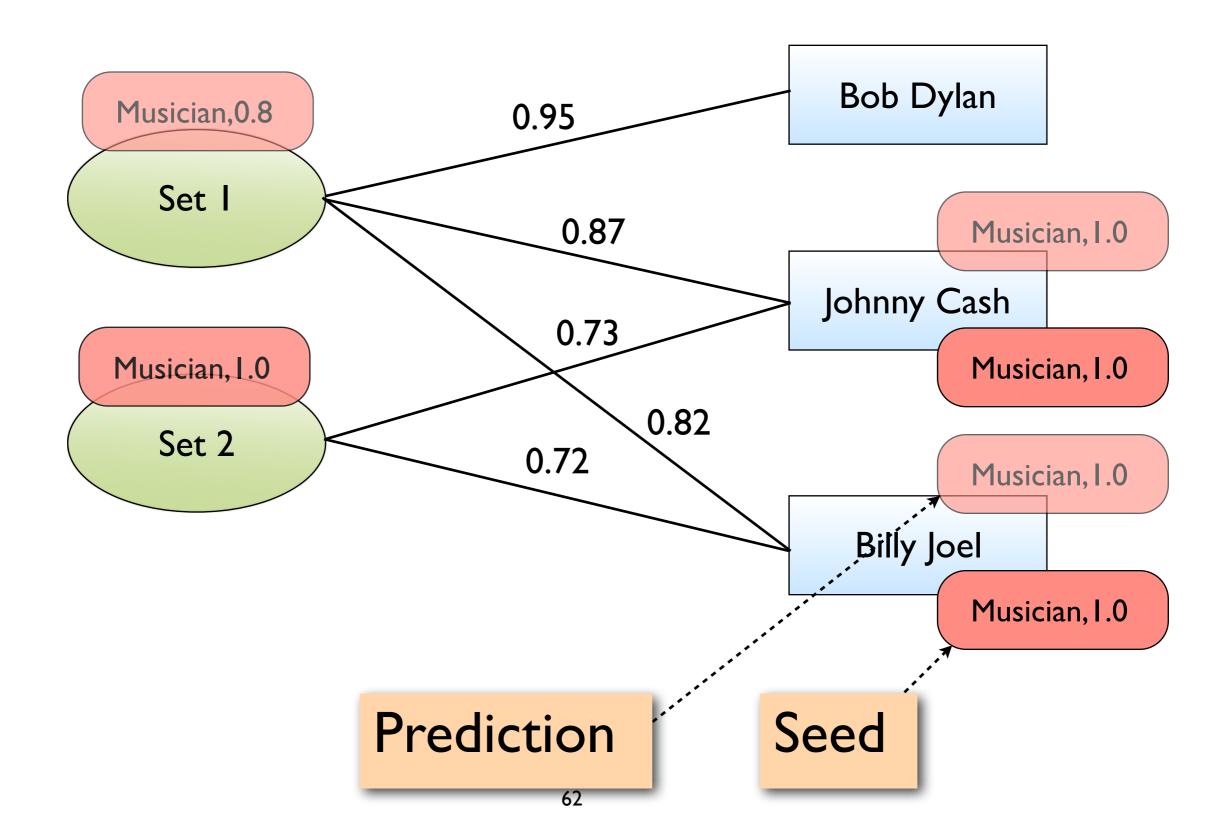


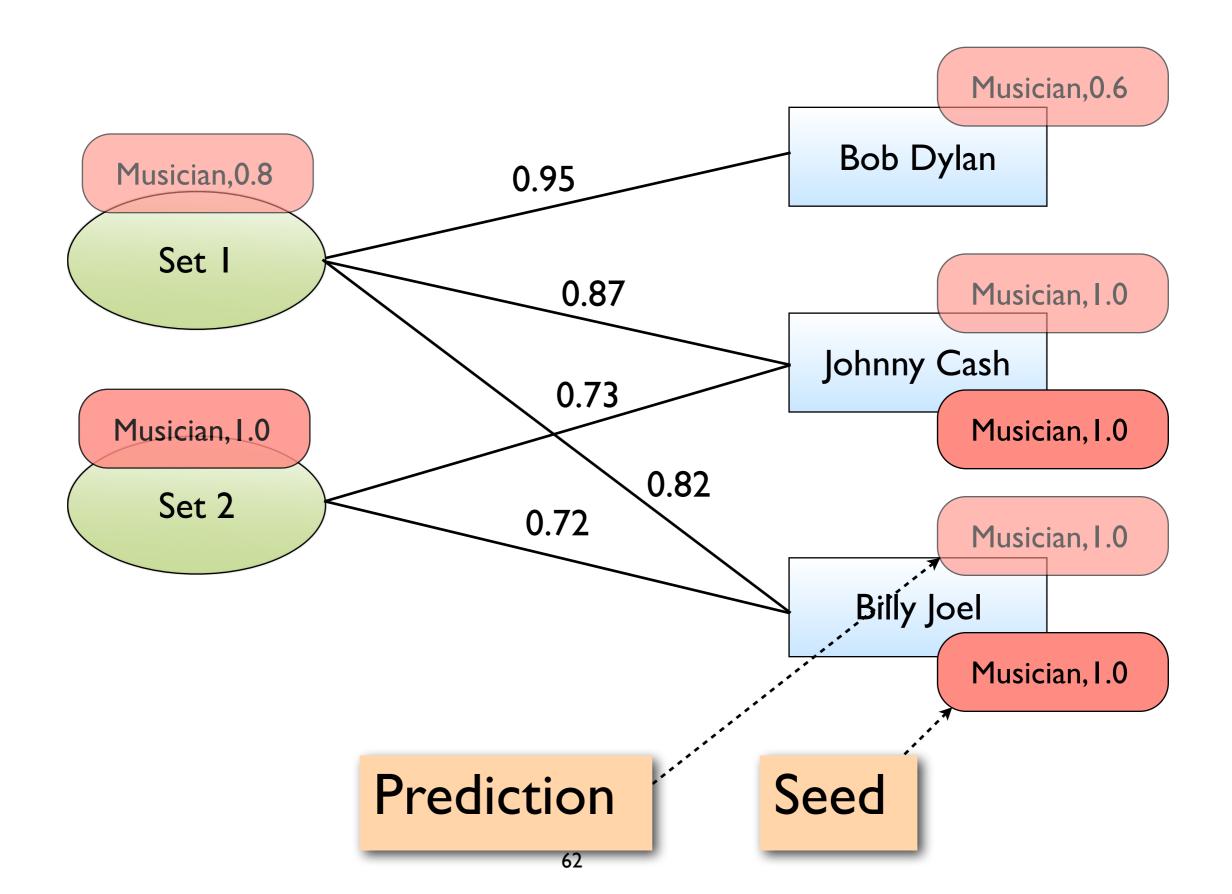


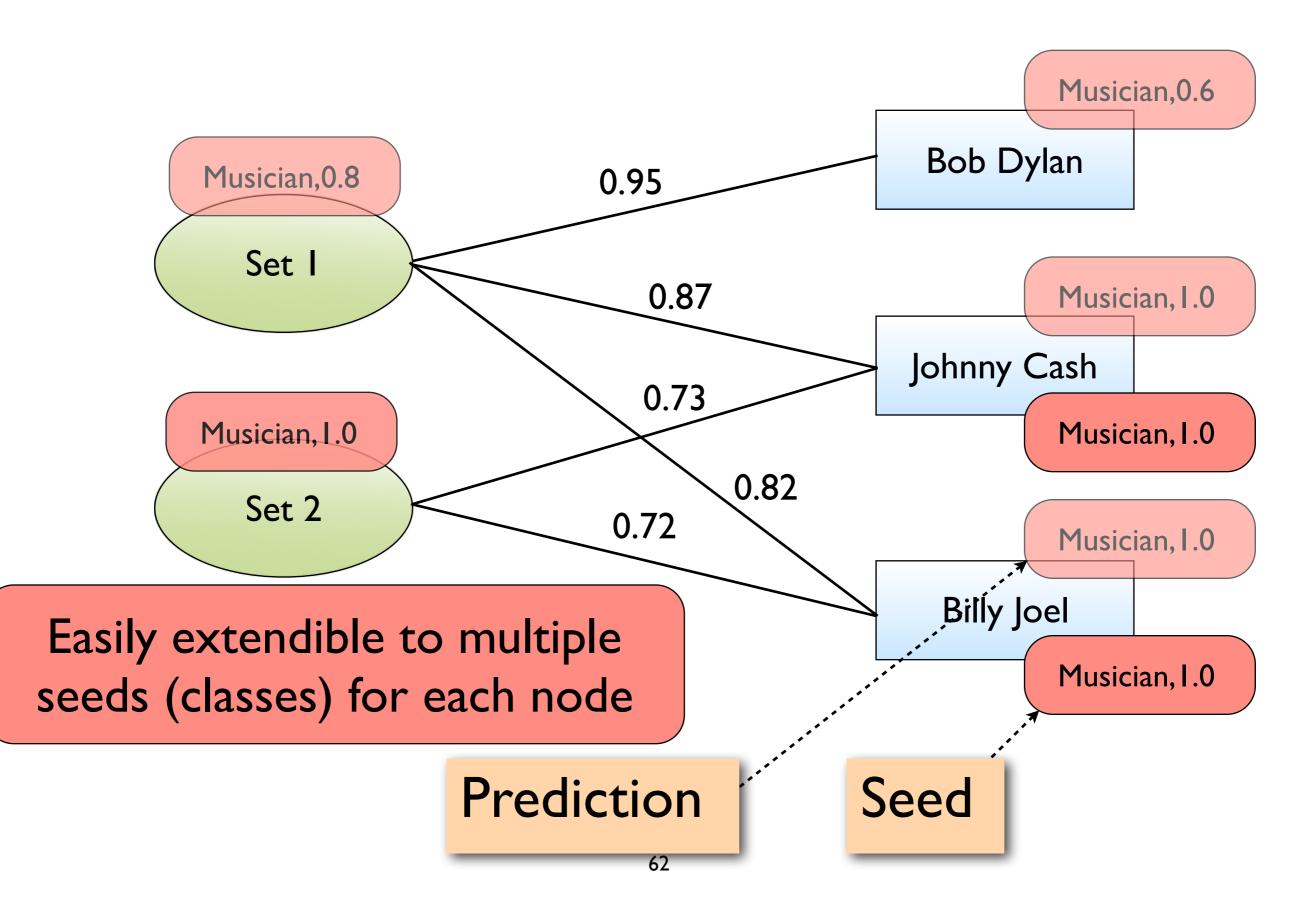








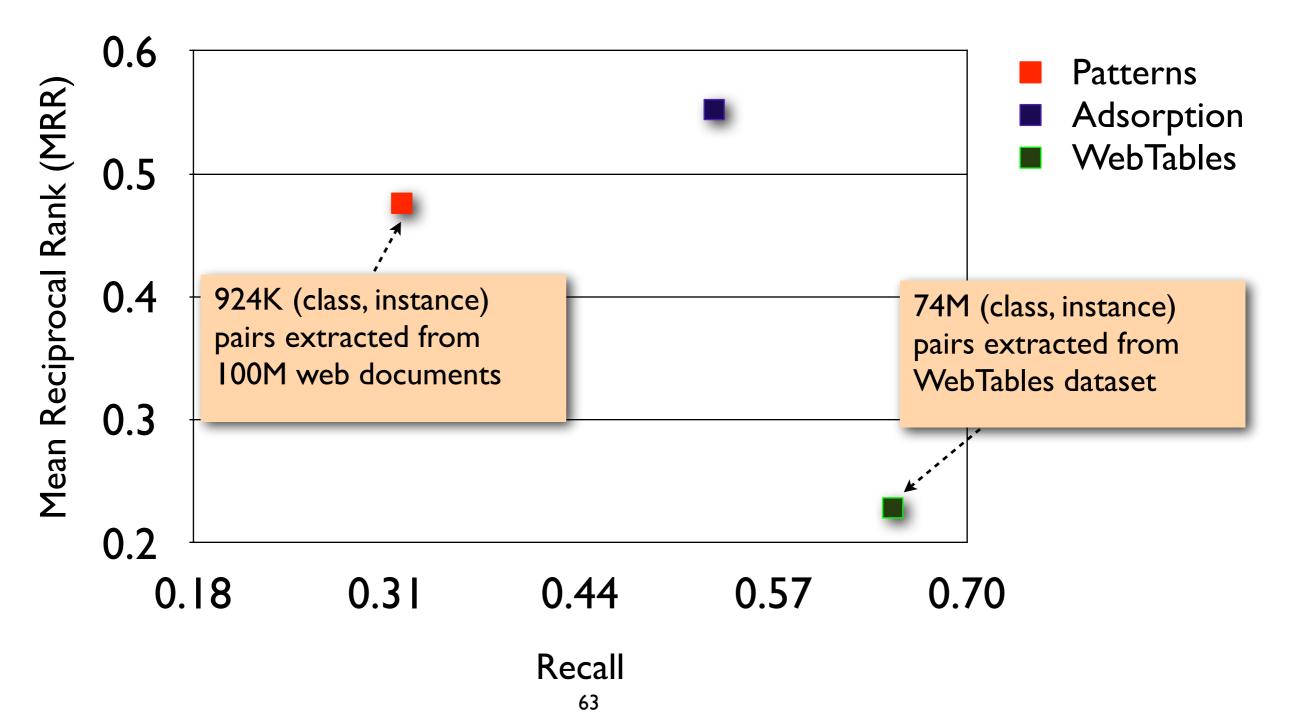


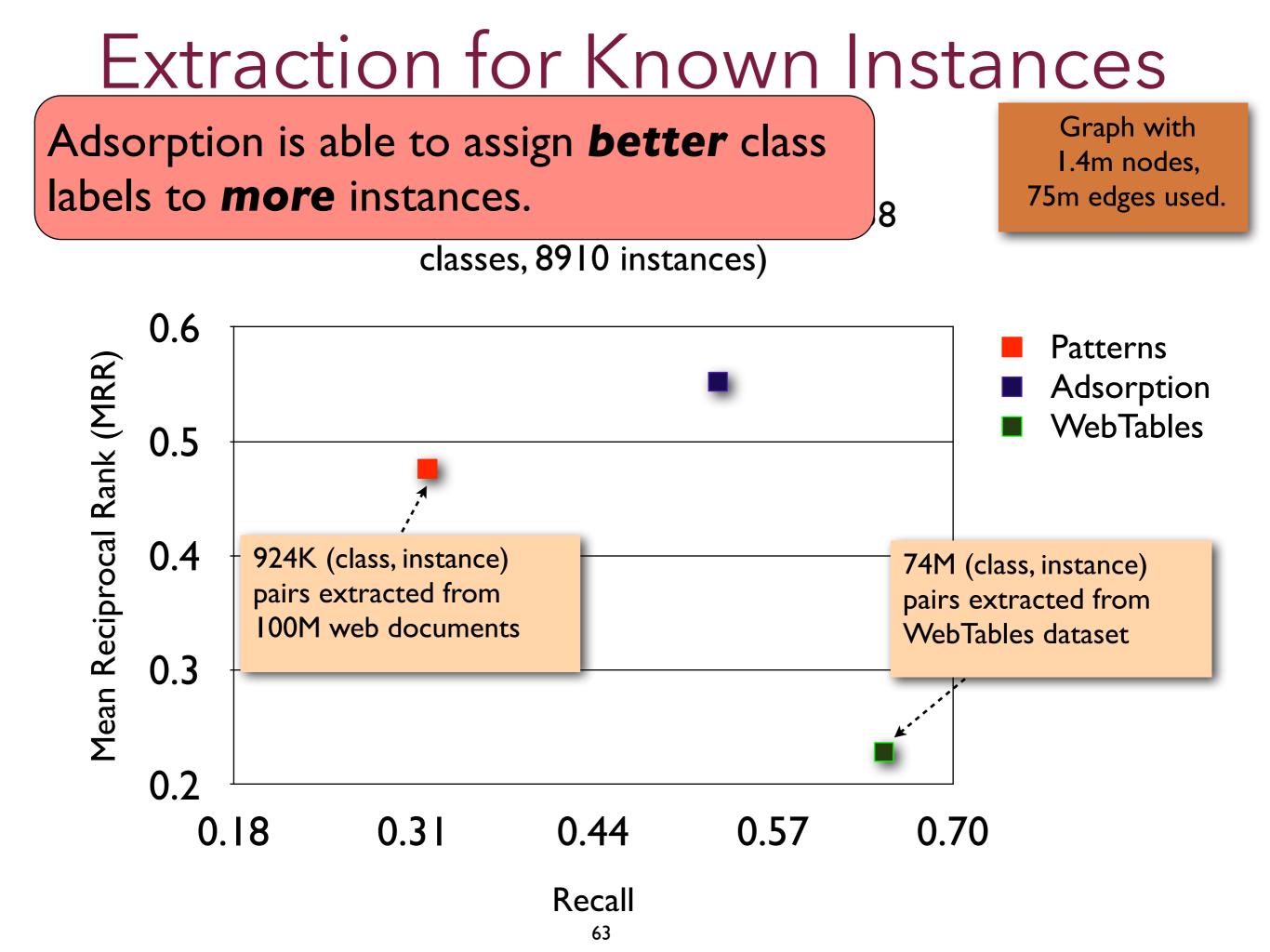


Extraction for Known Instances

Graph with I.4m nodes, 75m edges used.

Evaluation against WordNet Dataset (38 classes, 8910 instances)



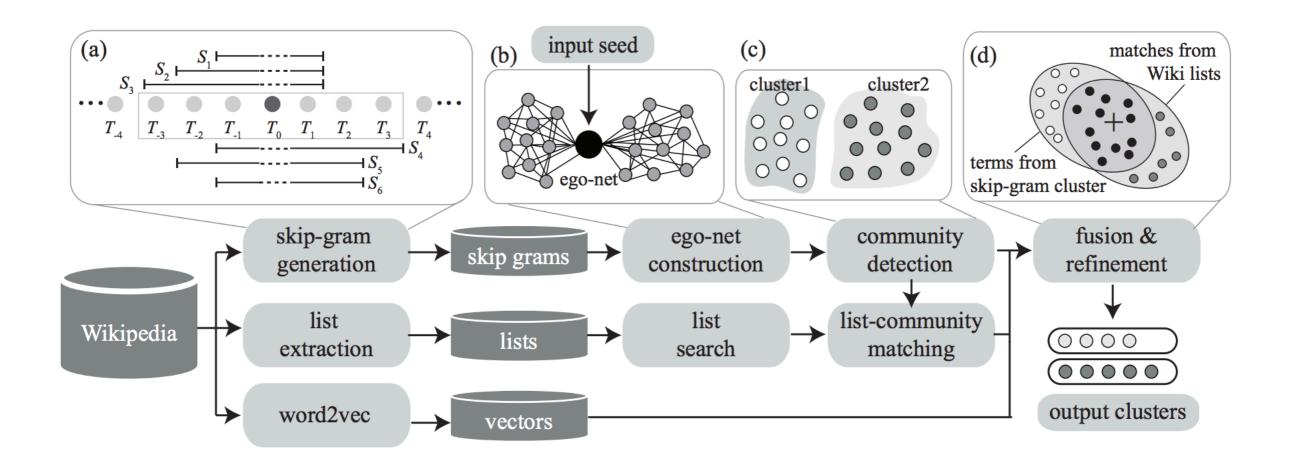


Extracted Pairs

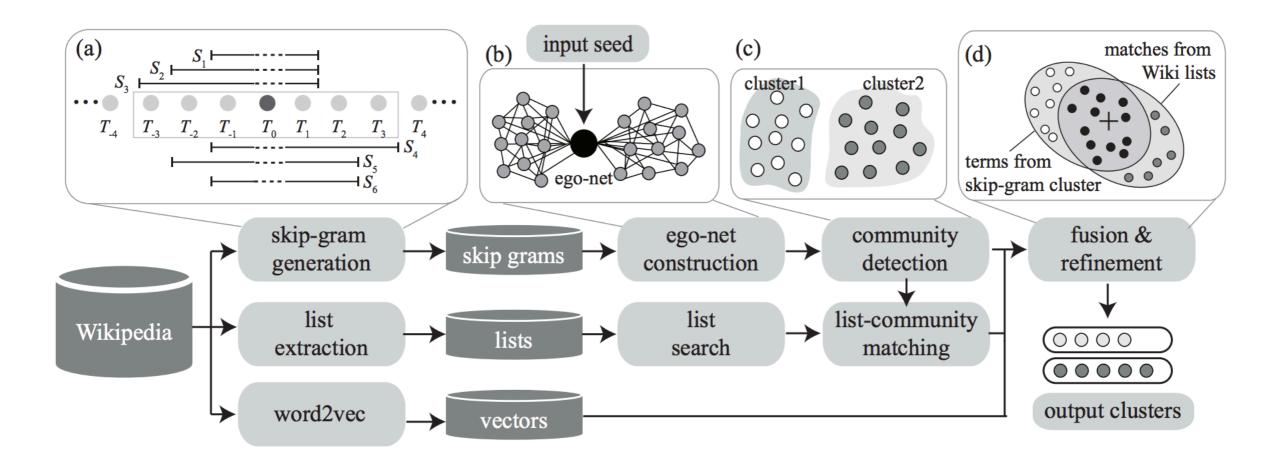
Total classes: 908 |

Class	Some non-seed Instances found
Scientific Journals	Journal of Physics, Nature, Structural and Molecular Biology, Sciences Sociales et sante, Kidney and Blood Pressure Research, American Journal of Physiology- Cell Physiology,
NFL Players	Tony Gonzales, Thabiti Davis, Taylor Stubblefield, Ron Dixon, Rodney Hannan,
Book Publishers	Small Night Shade Books, House of Ansari Press, Highwater Books, Distributed Art Publishers, Cooper Canyon Press,

EgoSet [Rong et al., WSDM 2016]



EgoSet [Rong et al., WSDM 2016]



		1 seed			2 seeds			3 seeds			4 seeds		
		p@5	p@10	p@20	p@5	p@10	p@20	p@5	p@10	p@20	p@5	p@10	p@20
baseline	SEAL	-	-	-	0.208	0.169	0.138	0.368	0.312	0.269	0.393	0.342	0.298
	NeedleSeek	0.432	0.372	0.325	-	-	-	-	-	-	-	-	-
single	WikiList	0.369	0.331	0.292	0.313	0.295	0.250	0.401	0.340	0.284	0.379	0.366	0.325
	word2vec	0.360	0.296	0.249	0.317	0.271	0.219	0.389	0.313	0.247	0.431	0.373	0.320
fusion	EgoSet-SG & WikiList	0.465	0.413	0.358	0.357	0.316	0.272	0.366	0.325	0.280	0.447	0.374	0.329
	word2vec & WikiList	0.390	0.331	0.289	0.334	0.313	0.222	0.373	0.303	0.240	0.352	0.333	0.308
	EgoSet-ALL	0.490	0.427	0.372	0.369	0.323	0.274	0.432	0.370	0.313	0.453	0.399	0.356

Table 4: End-to-end performance evaluation.

Outline

13:00-13:15 Overview and motivation

13:15-13:45 Case study: NELL

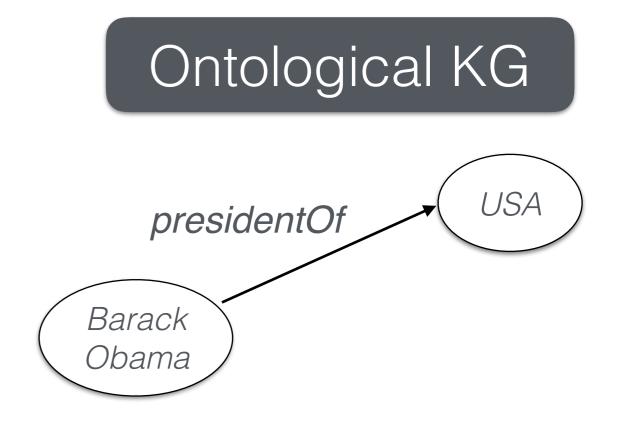
13:45-14:00 Bootstrapped Entity Extraction

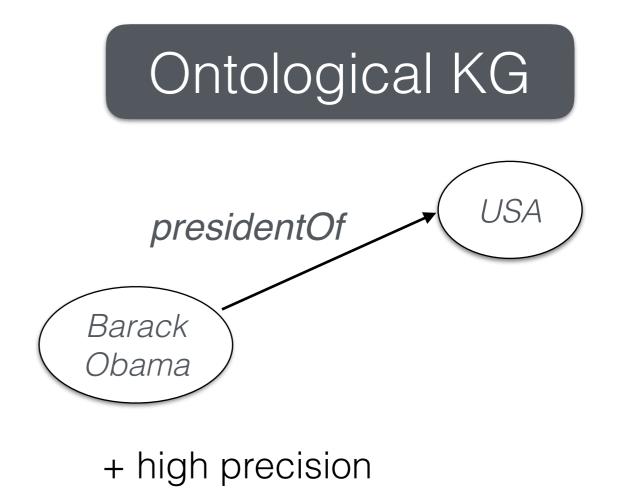
14:00-15:00 Open Relation Extraction & Canonicalization

- 15:00-15:30 Coffee Break
- 15:30-16:15 Distantly-supervised Relation Extraction
- 16:15-16:45 Knowledge Graph Embeddings

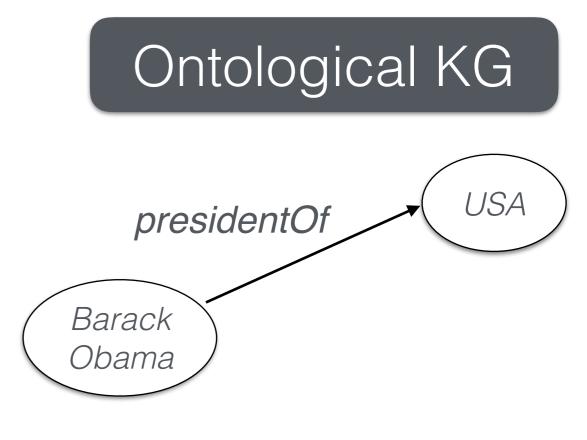
16:45-17:00 Conclusion & QA

Many OpenIE slides from Mausam



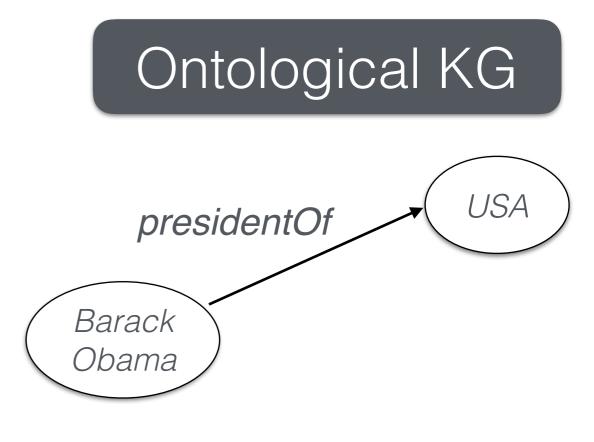


"Obama was the President of USA."

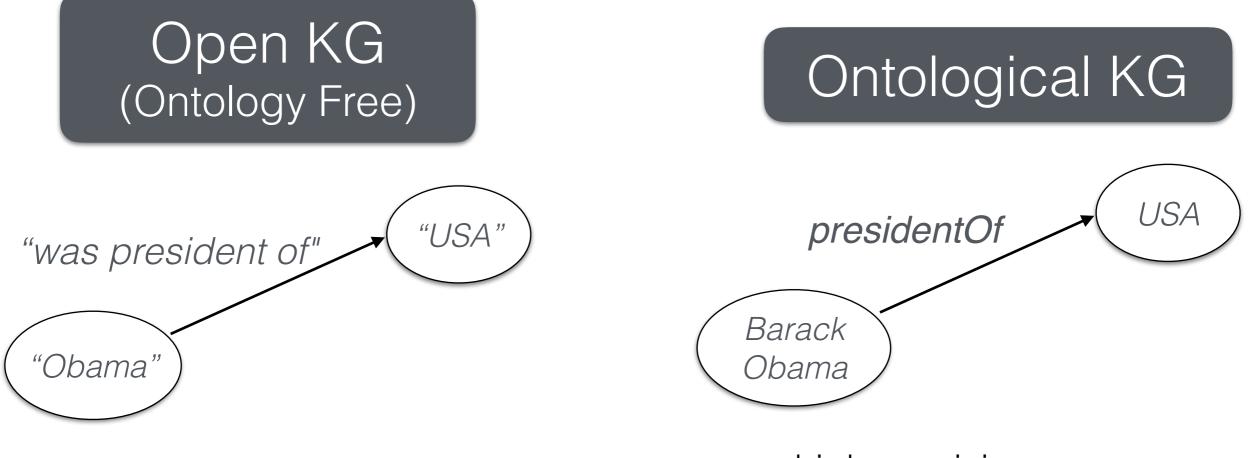


+ high precision

+ canonicalized/normalized

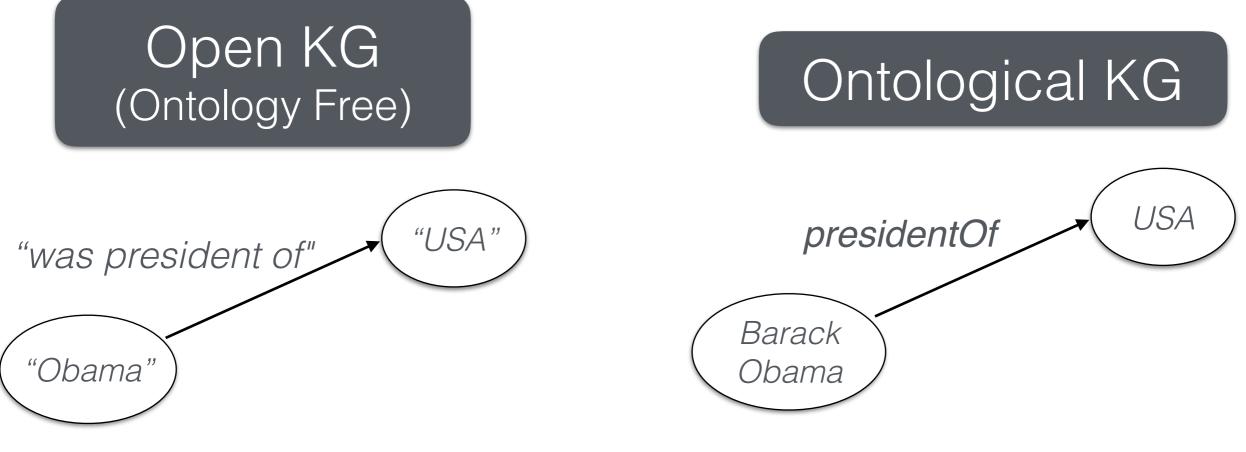


- + high precision
- + canonicalized/normalized
- requires supervision



- + high precision
- + canonicalized/normalized
- requires supervision

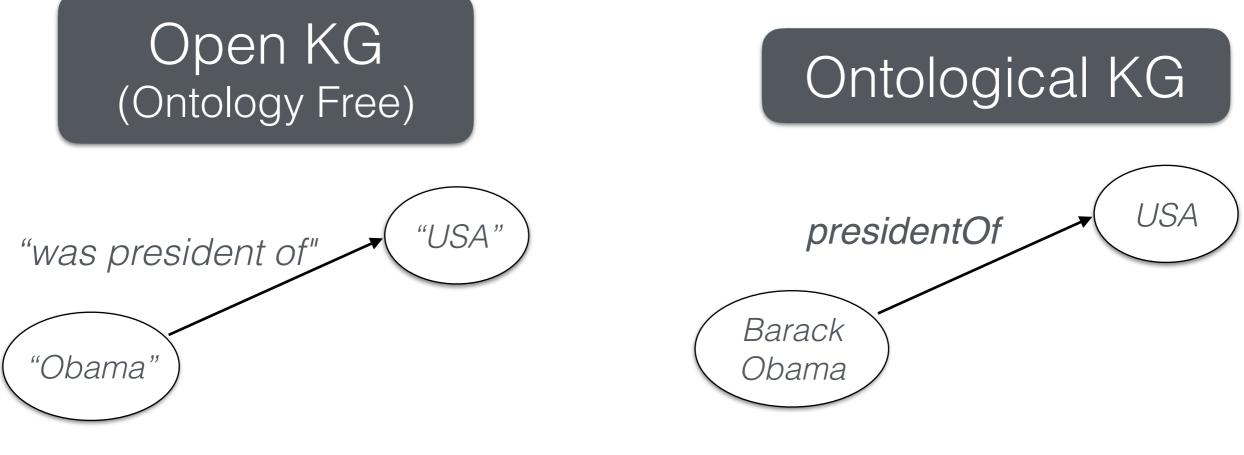
"Obama was the President of USA."



easy to build, available tools

- + high precision
- + canonicalized/normalized
- requires supervision

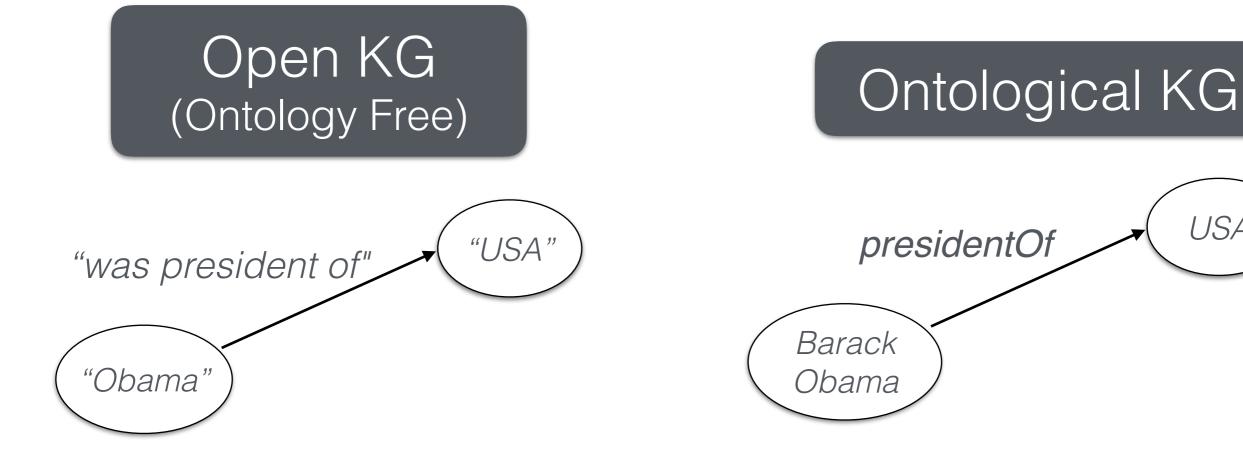
"Obama was the President of USA."



+ easy to build, available tools+ high recall

- + high precision
- + canonicalized/normalized
- requires supervision

"Obama was the President of USA."



- easy to build, available tools
- high recall +
- fragmented (more later)

- + high precision
- + canonicalized/normalized

USA

- requires supervision

Machine Reading at Web Scale

• A "universal schema" is impossible

Machine Reading at Web Scale

- A "universal schema" is impossible
- Global consistency is like world peace

Machine Reading at Web Scale

- A "universal schema" is impossible
- Global consistency is like world peace

- Ontological "glass ceiling"
 - Limited vocabulary
 - Pre-determined predicates
 - Swamped by reading at scale!

Motivation

- General purpose
 - hundreds of thousands of relations
 - thousands of domains
- Scalable: computationally efficient

 huge body of text on Web and elsewhere
- Scalable: minimal manual effort

 large-scale human input impractical
- Knowledge needs not anticipated in advance
 rapidly retargetable

Motivation

- General purpose
 - hundreds of thousands of relations
 - thousands of domains

- Scalable: computationally efficient
 - huge body of text on Web and elsewhere
- Scalable: minimal manual effort

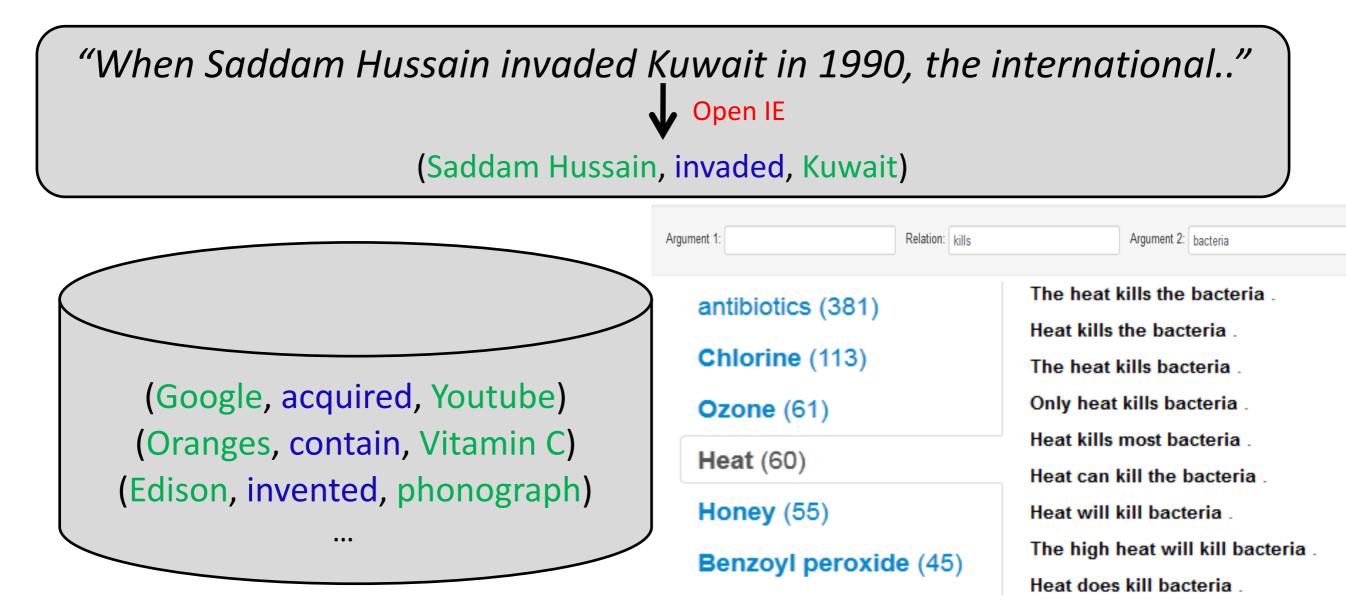
 large-scale human input impractical
- Knowledge needs not anticipated in advance
 rapidly retargetable

Open IE Guiding Principles

- Domain independence
 - Training for each domain/fact type not feasible
- Scalability
 - Ability to process large number of documents fast
- Coherence
 - Readability important for human interactions

Open Information Extraction

Extracting information from natural language text for *all* relations in *all* domains in a *few* passes.



Open vs. Traditional IE

Traditional IE

Input:

Relations:

Complexity:

Output:

Corpus + Handlabeled Data

> Specified in Advance O(D * **R**) *R* relations

relation-specific

Open IE

Corpus + Existing resources

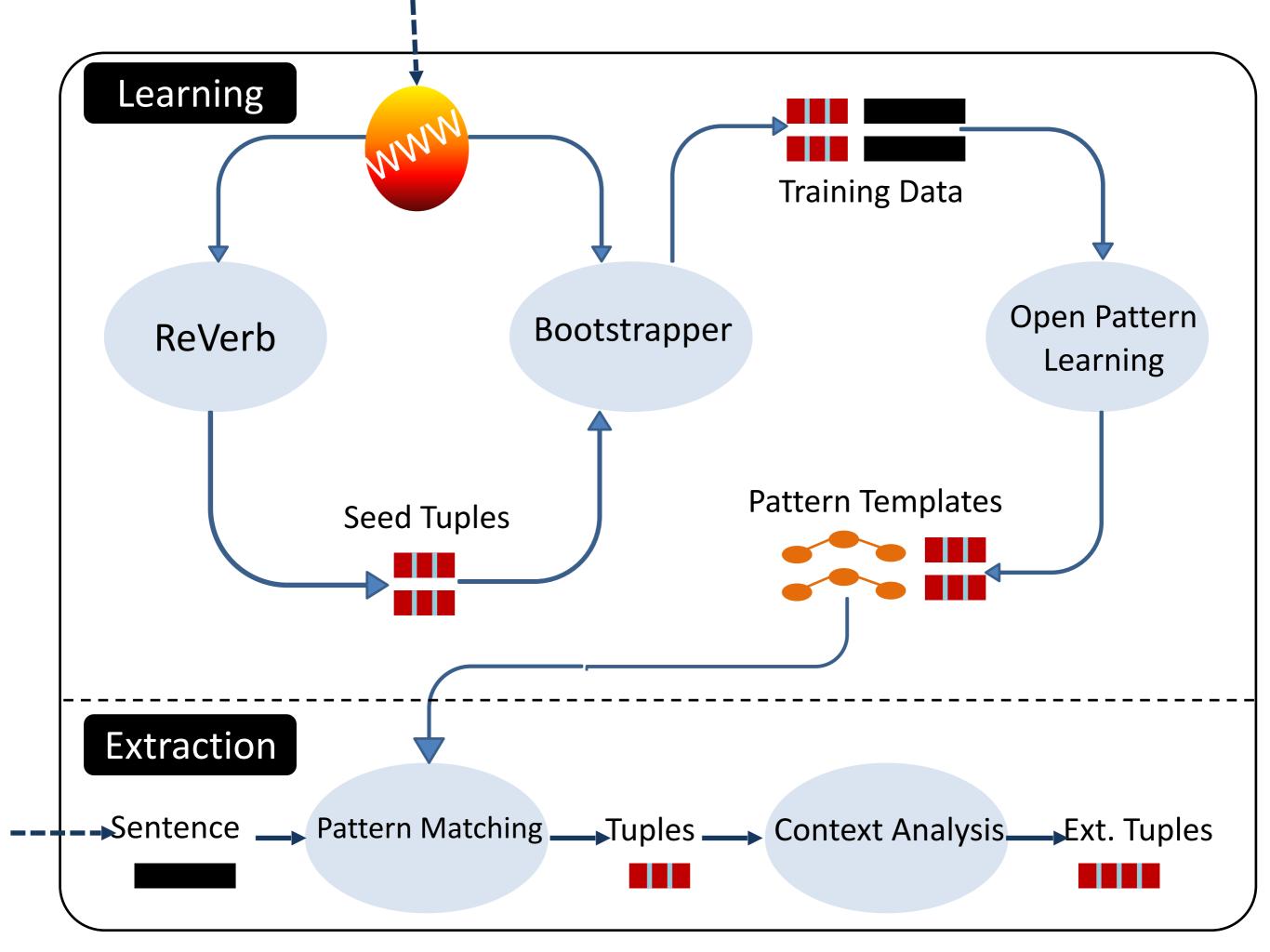
Discovered Automatically O(D) D documents

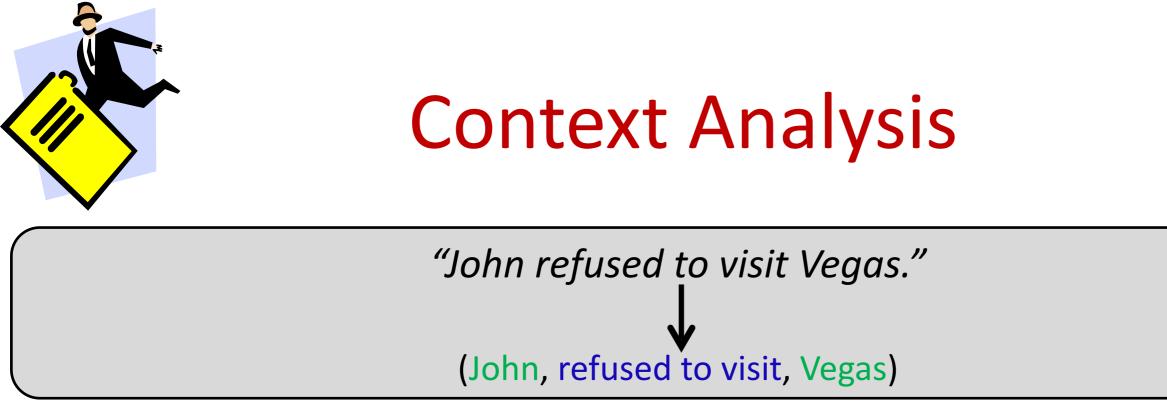
Relationindependent

Open Information Extraction

- 2007: Textrunner (~Open IE 1.0)
 - CRF and self-training
- 2010: ReVerb (~Open IE 2.0)
 POS-based relation pattern
- 2012: OLLIE (~Open IE 3.0)
 - Dep-parse based extraction; nouns; attribution
- 2014: Open IE 4.0
 - SRL-based extraction; temporal, spatial...
- 2016 [@IITD]: Open IE 5.0
 - compound noun phrases, numbers, lists

increasing precision, recall, expressiveness





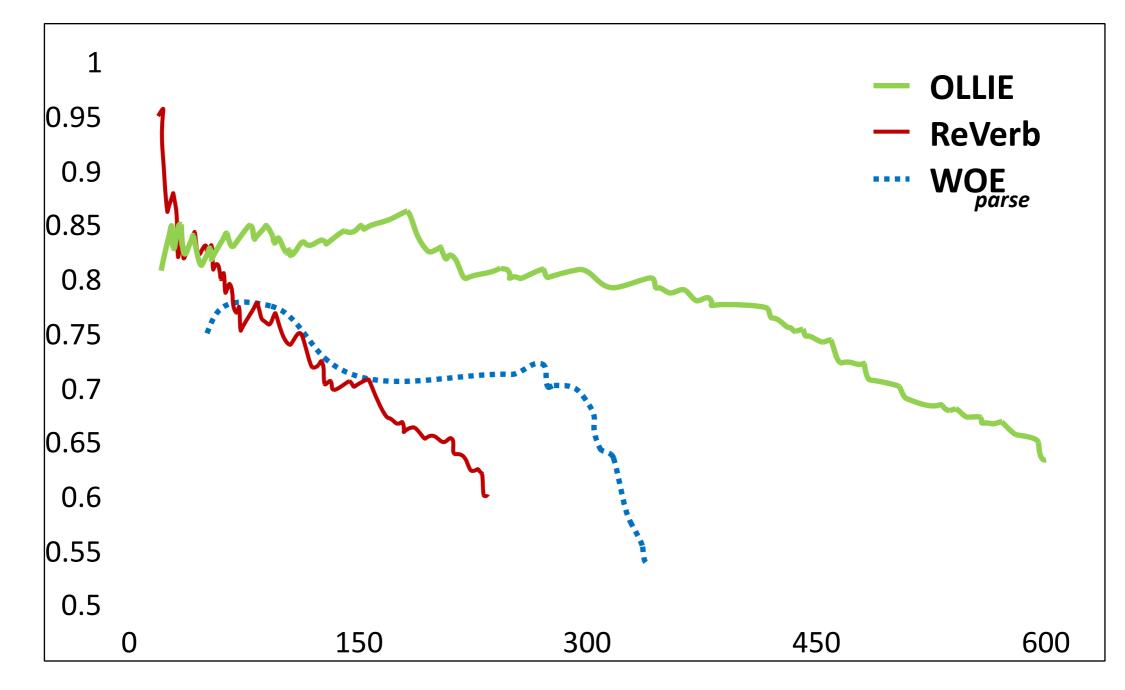
"Early astronomers believed that the earth is the center of the universe." [(earth, is the center of, universe) Attribution: early astronomers]

"If she wins California, Hillary will be the nominated presidential candidate."

[(Hillary, will be nominated, presidential candidate) Modifier: if she wins California]

Evaluation

[Mausam, Schmitz, Bart, Soderland, Etzioni - EMNLP'12]



Precision

Yield

Take Homes

- Bootstrapping based on ReVerb
 - Look for args as well as relations when bootstrapping
- Generalization
 - Syntactic and semantic generalizations of learned patterns
- Context around an extraction
 - Obtains superior precision than ReVerb
- Syntactically different ways of expressing a relation
 - Obtains much higher recall than ReVerb

Numerical Open IE

[Saha, Pal, Mausam ACL'17]

"Venezuela with its inflation rate 96% is suffering from a major..."

Numerical Open IE

(Venezuela, inflation rate, 96 %)

"Grand Trunk Road is 1,005 kms long."

Numerical Open IE

(Grand Trunk Road, has length, 1005 kms)

OpenIE v5: https://github.com/dair-iitd/OpenIE-standalone

Open KG Canonicalization

• Work in an "ontology free" setting.

- Work in an "ontology free" setting.
- Extract <noun-phrase, relation-phrase, noun-phrase> triples from each sentence
 - Obama was the President of US. => (Obama, was president of, USA)

- Work in an "ontology free" setting.
- Extract <noun-phrase, relation-phrase, noun-phrase> triples from each sentence
 - Obama was the President of US. => (Obama, was president of, USA)
- Examples: TextRunner, ReVerb, Ollie, etc.

- Work in an "ontology free" setting.
- Extract <noun-phrase, relation-phrase, noun-phrase> triples from each sentence
 - Obama was the President of US. => (Obama, was president of, USA)
- Examples: TextRunner, ReVerb, Ollie, etc.
- Issues:
 - May store redundant and split facts <Bangalore, capital-of, Karnataka>
 <Bengaluru, has-population, 11 million>
 <Mysore, city-in, Karnataka>

- Work in an "ontology free" setting.
- Extract <noun-phrase, relation-phrase, noun-phrase> triples from each sentence
 - Obama was the President of US. => (Obama, was president of, USA)
- Examples: TextRunner, ReVerb, Ollie, etc.
- Issues:
 - May store redundant and split facts <Bangalore, capital-of, Karnataka>
 <Bengaluru, has-population, 11 million>
 <Mysore, city-in, Karnataka>
- Need to canonicalize Open KGs

NP Canonicalization

NP Canonicalization

Barack Obama, Mr. Obama, George Bush, Mumbai, Bombay, Madrid

NP Canonicalization

Barack Obama, Mr. Obama, George Bush, Mumbai, Bombay, Madrid

Barack Obama Mr. Obama	George Bush	Madrid
	Mumbai Bombay	

[Galarraga et al., 2014]

- Canonicalize Open KG by clustering synonymous nouns phrases.
- Uses several types of measures for defining similarity between synonymous noun phrases
- After noun phrase canonicalization, AMIE [Galarraga et al., 2013] is employed for canonicalizing relations

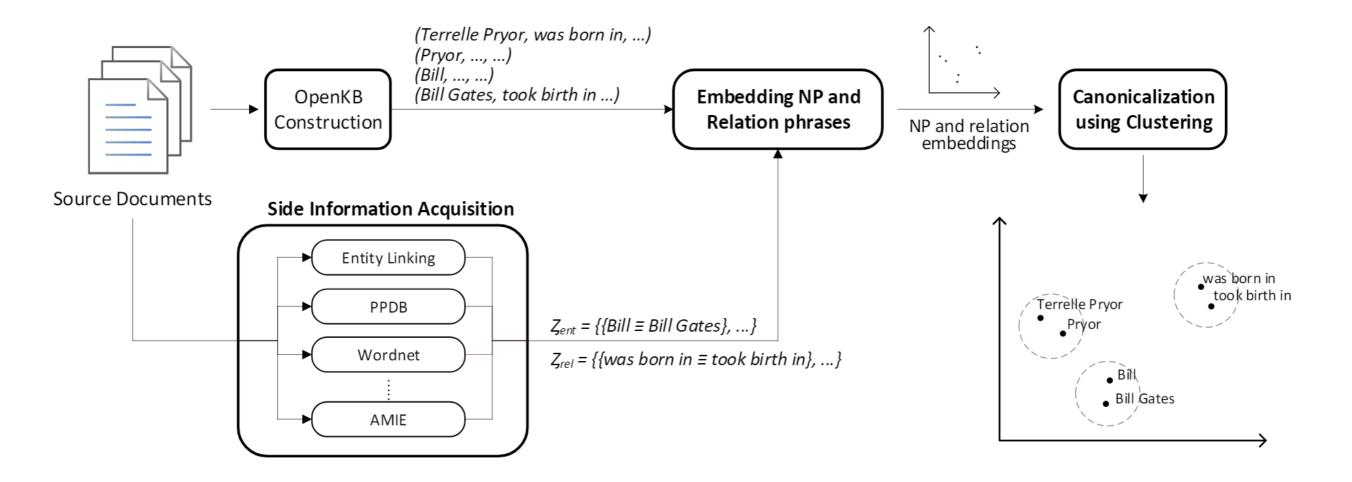
IDF Token Overlap:

$$f(m,m') = \frac{\sum_{x \in w(m) \cap w(m')} \log (1 + df(x))^{-1}}{\sum_{x \in w(m) \cup w(m')} \log (1 + df(x))^{-1}}$$

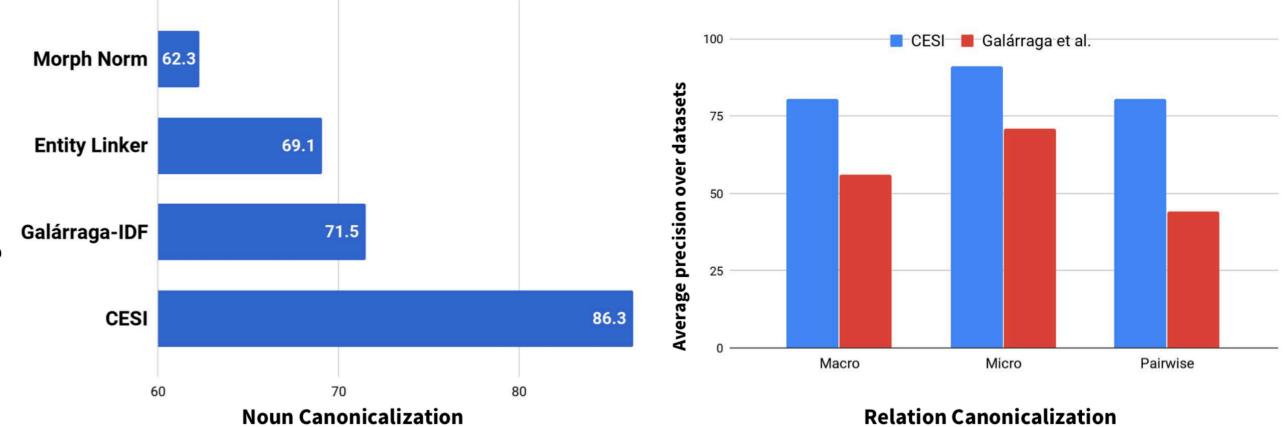
 Embeds noun and relation phrases followed by clustering for canonicalizing Open KGs

- Embeds noun and relation phrases followed by clustering for canonicalizing Open KGs
- Jointly canonicalizes noun and relation phrases while utilizing relevant side information

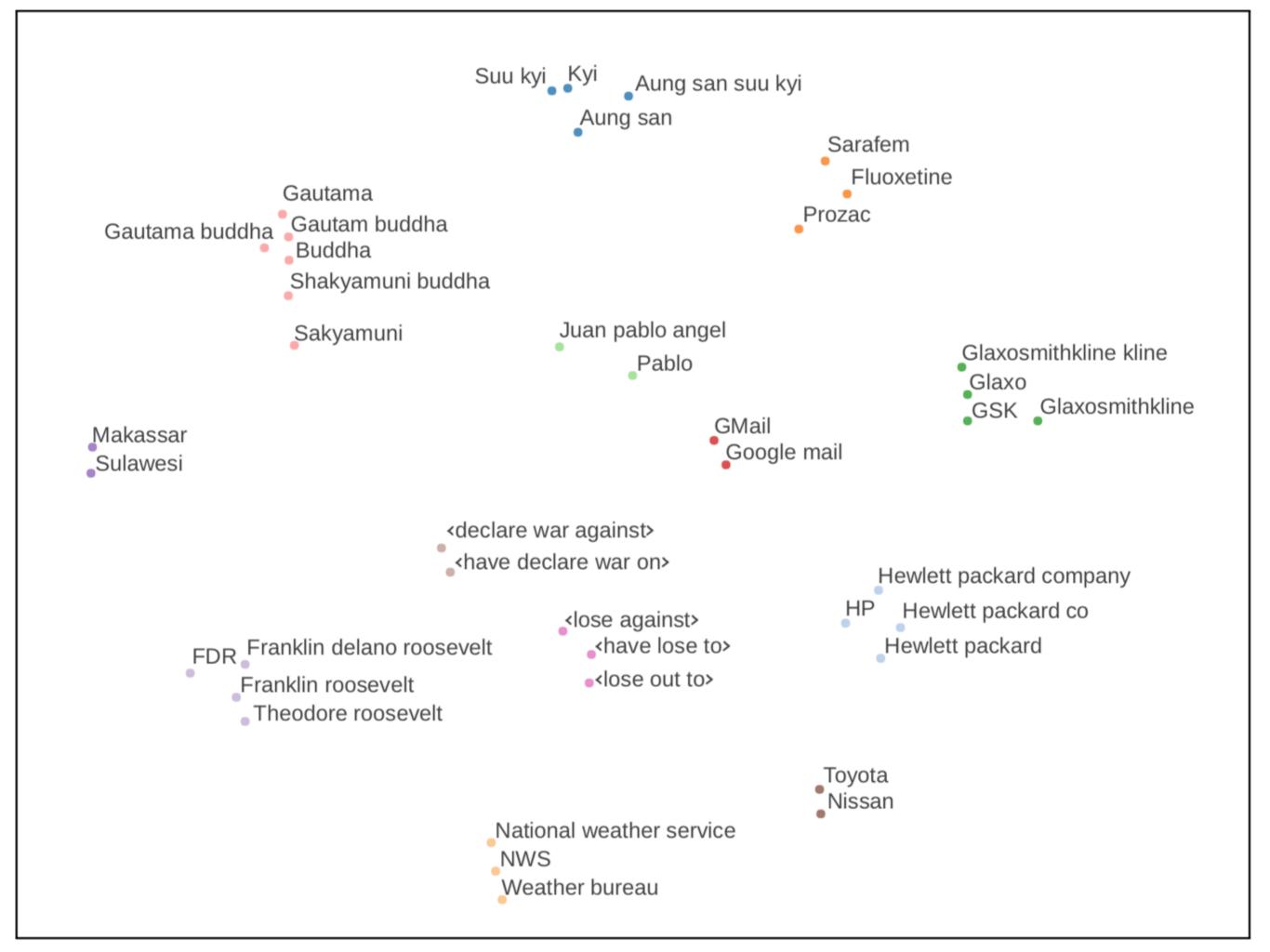
- Embeds noun and relation phrases followed by clustering for canonicalizing Open KGs
- Jointly canonicalizes noun and relation phrases while utilizing relevant side information
- Side Information Acquisition: Gathers various NP and relation phrase side information for each triple in KG
 - e.g., entity linking, paraphrasing, token overlap etc.



Canonicalization Results



CESI Code: <u>https://github.com/malllabiisc/cesi</u>



Relation Schema Induction

Domain-specific Knowledge Graphs (KG)

Domain-specific Knowledge Graphs (KG)

 Need KGs in specific domains (e.g., insurance, automotives, etc.)

Domain-specific Knowledge Graphs (KG)

- Need KGs in specific domains (e.g., insurance, automotives, etc.)
- General purpose KGs (e.g., Freebase, YAGO, NELL, etc.) are good starting points, but often not enough

Domain-specific Knowledge Graphs (KG)

- Need KGs in specific domains (e.g., insurance, automotives, etc.)
- General purpose KGs (e.g., Freebase, YAGO, NELL, etc.) are good starting points, but often not enough
- Problem: how to build KG out of documents from a given domain, with minimal supervision?

- Relation Schemas [e.g., undergo(Patient, Surgery)]
 - starting point in ontological KG construction
 - prepared by experts: expensive and incomplete

- Relation Schemas [e.g., undergo(Patient, Surgery)]
 - starting point in ontological KG construction
 - prepared by experts: expensive and incomplete
- "... John underwent angioplasty last Tuesday ..."
- "... Sam will undergo Tonsillectomy ..."
- "... cells that undergo meiosis ..."

undergo(Patient, Surgery) undergo(Cell, Division)

. . .

- Relation Schemas [e.g., undergo(Patient, Surgery)]
 - starting point in ontological KG construction
 - prepared by experts: expensive and incomplete
- *"… John underwent angioplasty last Tuesday …" "… Sam will undergo Tonsillectomy …"*
- "... cells that undergo meiosis ..."

undergo(Patient, Surgery) undergo(Cell, Division)

. . .

How to automatically identify relations and their schemas from domain documents?

KB-LDA [Movshovitz-Attias and Cohen, 2015]

- A topic modeling approach for KB schema induction
- Learns both latent hierarchical structure of categories and latent semantic relations between categories

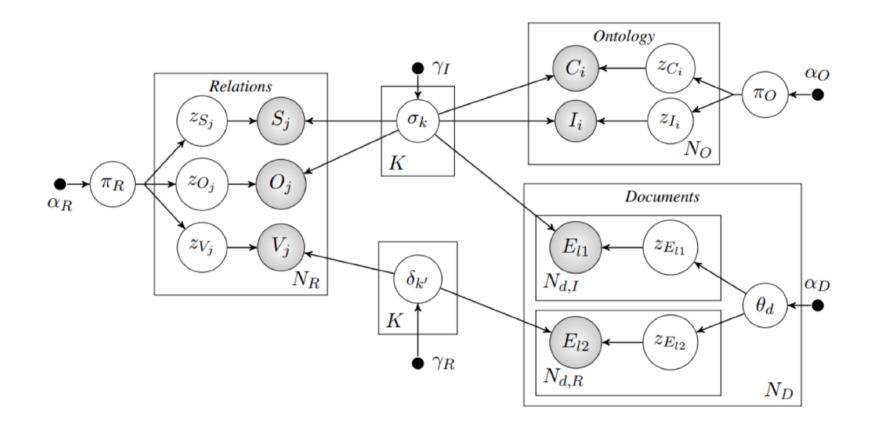
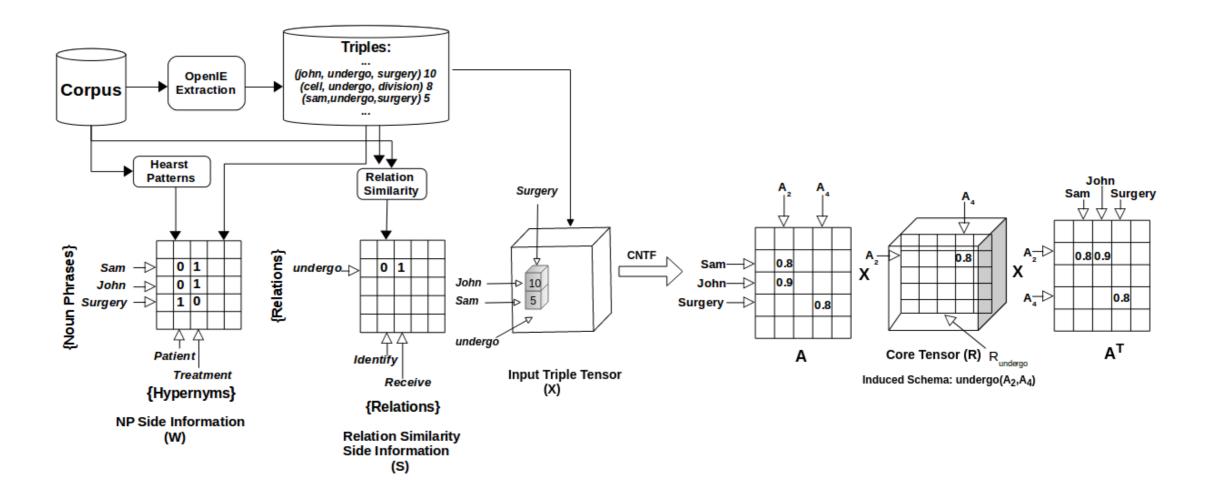
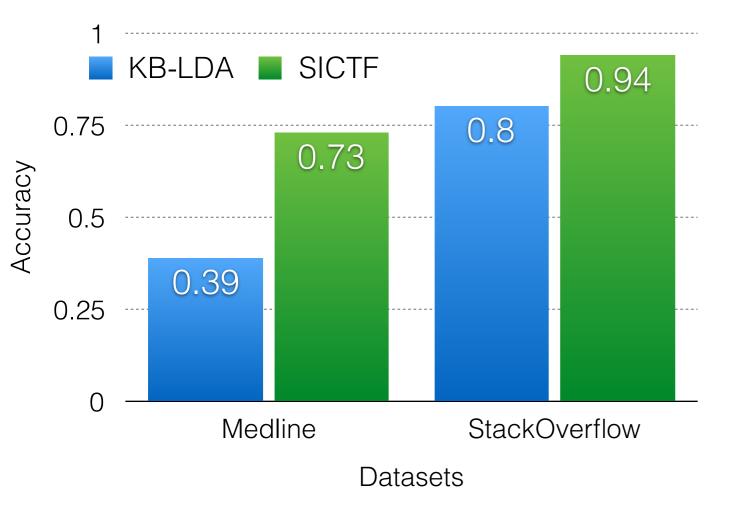


Figure : Plate Diagram of KB-LDA (figure taken from the original paper).

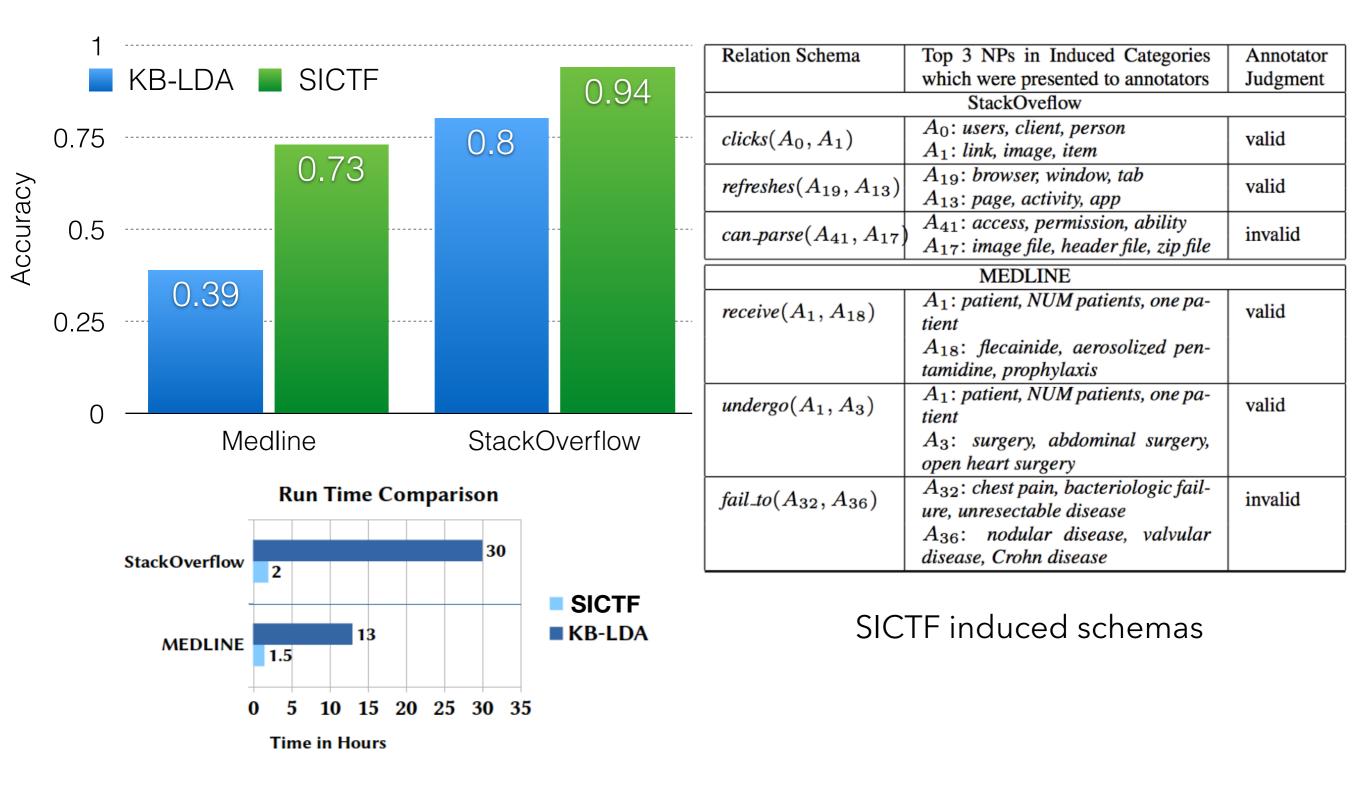
SICTF [Nimishakavi et al., 2016]

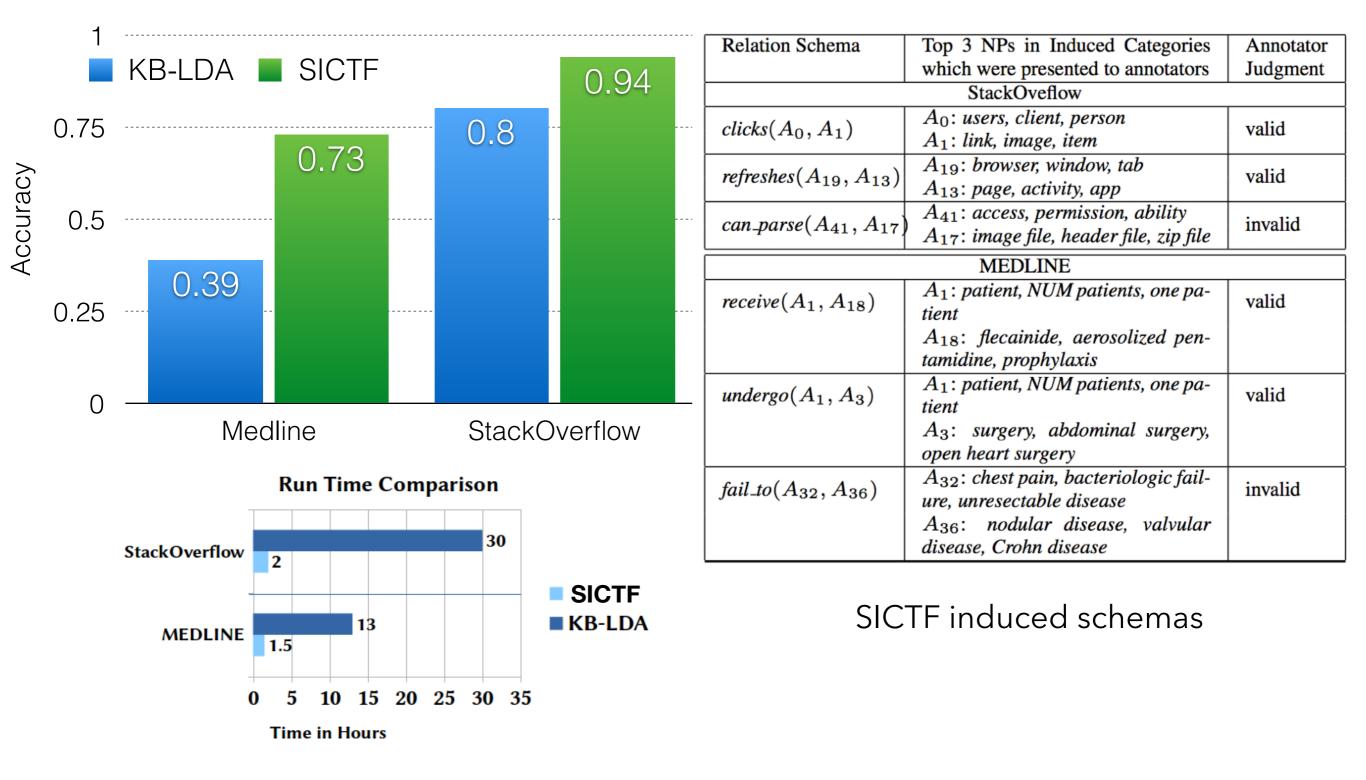
- Schema induction using coupled tensor-matrix factorization
- Inputs: SVO triples tensor, NP x Category side info matrix, relation similarity side info matrix











SICTF Code: https://github.com/malllabiisc/sictf

TFBA [Nimishakavi et al., 2018]

- Induces higher-order relation schemas (beyond binary)
- Factorizes higher-oder tensor by backing-off into multiple lower-order tensors, factorizes everything jointly

TFBA [Nimishakavi et al., 2018]

- Induces higher-order relation schemas (beyond binary)
- Factorizes higher-oder tensor by backing-off into multiple lower-order tensors, factorizes everything jointly

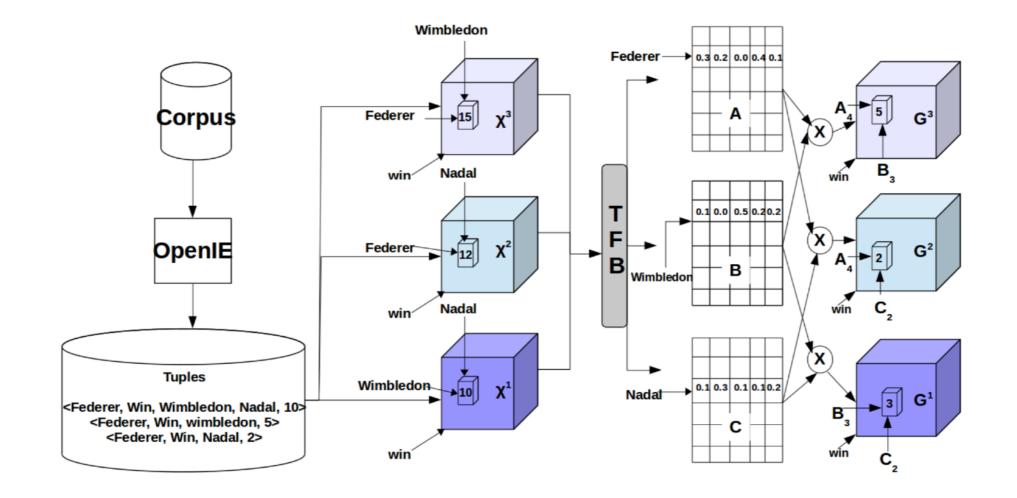
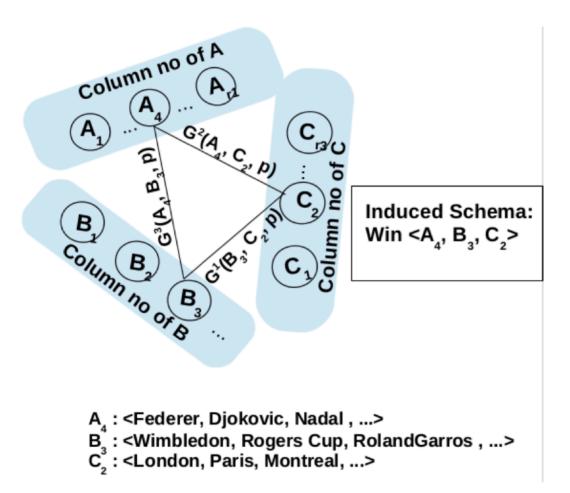


Figure : Tensor Factorization with Back-off

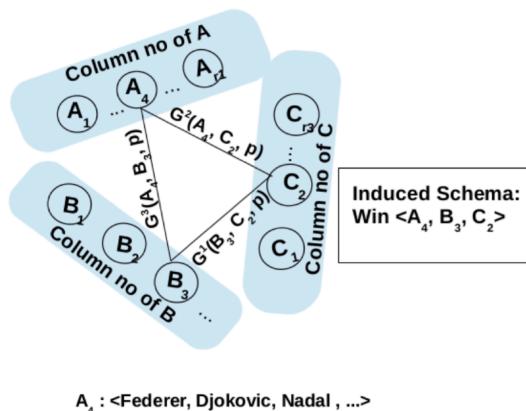
TFBA (contd.)

 TFBA constructs higher-order schemas by solving a constrained-clique mining



TFBA (contd.)

 TFBA constructs higher-order schemas by solving a constrained-clique mining



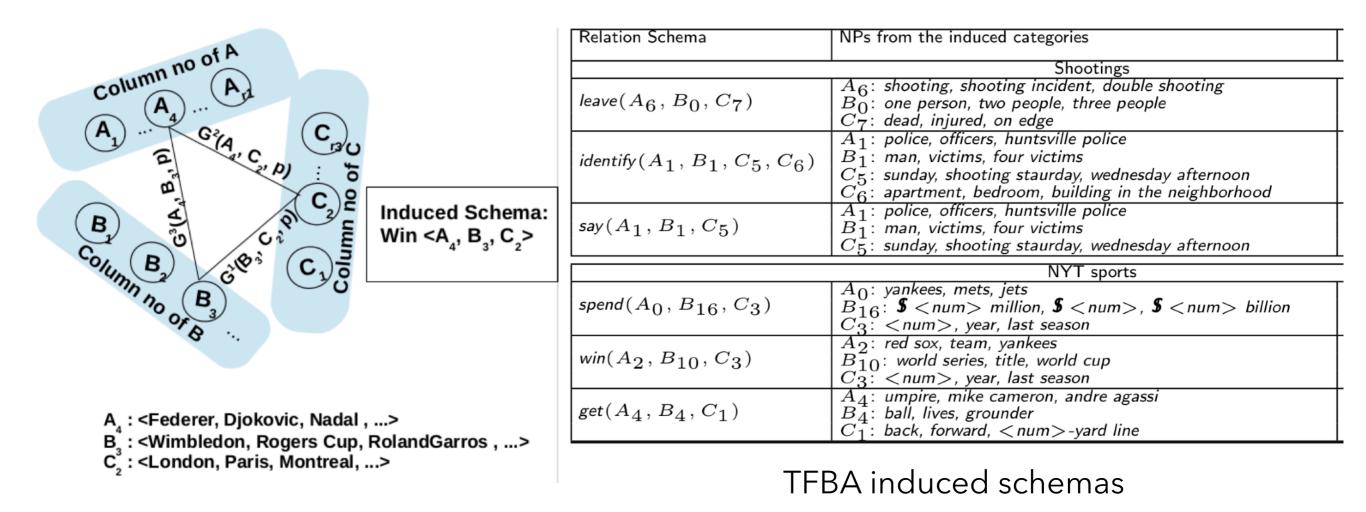
B⁴₂ : <Wimbledon, Rogers Cup, RolandGarros , ...> C³₂ : <London, Paris, Montreal, ...>

Relation Schema	NPs from the induced categories
Shootings	
$leave(A_6, B_0, C_7)$	A_6 : shooting, shooting incident, double shooting B_0 : one person, two people, three people C_7 : dead, injured, on edge
$\mathit{identify}(A_1,B_1,C_5,C_6)$	A_1 : police, officers, huntsville police B_1 : man, victims, four victims C_5 : sunday, shooting staurday, wednesday afternoon C_6 : apartment, bedroom, building in the neighborhood
$say(A_1,B_1,C_5)$	A_1 : police, officers, huntsville police B_1 : man, victims, four victims C_5 : sunday, shooting staurday, wednesday afternoon
NYT sports	
$spend(A_0, B_{16}, C_3)$	A_0 : yankees, mets, jets B_{16} : $\mathbf{S} < num > million$, $\mathbf{S} < num >$, $\mathbf{S} < num >$ billion C_3 : $< num >$, year, last season
$win(A_2, B_{10}, C_3)$	A_2 : red sox, team, yankees B_{10} : world series, title, world cup C_3 : <num>, year, last season</num>
$get(A_4, B_4, C_1)$	A_4 : umpire, mike cameron, andre agassi B_4 : ball, lives, grounder C_1 : back, forward, < num>-yard line

TFBA induced schemas

TFBA (contd.)

 TFBA constructs higher-order schemas by solving a constrained-clique mining



TFBA Code: <u>https://github.com/madhavcsa/TFBA</u>

Outline

13:00-13:15 Overview and motivation

13:15-13:45 Case study: NELL

13:45-14:00 Bootstrapped Entity Extraction

14:00-15:00 Open Relation Extraction & Canonicalization

15:00-15:30 Coffee Break

15:30-16:15 Distantly-supervised Relation Extraction

16:15-16:45 Knowledge Graph Embeddings

16:45-17:00 Conclusion & QA