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Introduction: Relation Extraction

Definition: A relation is defined in the form of r(e1, e2), where the
ei are entities in a predefined relation r. Easily extended to n-ary
relations (events).

Examples

I isAcquiredBy relationship between pairs of companies, e.g.,
isAcquiredby(Google, YouTube)

I isAppointedCeoOf relationship between a person and company

I geneCausesDisease between gene and disease

Types

I ?(e1, e2)

I r(e1, ?)

I r(?, ?)

I Macro (corpus-level) vs Micro (sentence-level)
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Example relations

I “is acquired by” relationship between pairs of companies

I “is appointed CEO of” relationship between a person and
company,

I “is employee of” relationship between a person and an
organization

I ACE Task
I “located at”
I “near”,
I “part”,
I “role”,
I “social”

over pairs from five top-level entity types “person”,
“organization”, “facility”, “location”, and, “geo-political entity”.

I BioCreAtIvE II Protein-Protein Interaction
I gene-disease relations,
I protein-protein interaction, and
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Dominant Approaches to Relationship Extraction

I Supervised
I For each relation type, we collect annotated sentences as training

examples.
I Preferred approach if the types of relations of interest is a small set
I Pros: Several effective methods: CRF, LSTM, Bi-LSTM etc. Works

quite well when enough training data is available.
I Cons: Human effort required scales with the number of distinct

relation types. Not feasible at scale.

I Weakly-supervised
I Supervision is provided at the relation instance level, not annotated

sentences (next slide).
I Pros: Supervision size is small and easy to provide. Much more

scalable and practical.
I Cons: There is more noise in the resulting training data, results in a

more challenging learning problem.
I State-of-the-art is at around 60% Precision at 30% recall → lot of

headroom for improvement
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(Weak) supervision setup

Given a corpus D, set of relationship types r1, . . . rk, entity types
Tr1, Tr2 forming arguments of relationship type r, and a seed set S
of examples of the form (Ei1, Ei2, ri) 1 ≤ i ≤ N indicating that
Ei1 has relationship ri with Ei2.

E1 E2 r Label
Alon Halevy Anhai Doan IsPhDAdvisorOf +
Donald Knuth Andrei Broder IsPhDAdvisorOf +
Jeff Ullman Surajit Chaudhari IsPhDAdvisorOf +
Alon Halevy Dan Suciu IsPhDAdvisorOf -

Google YouTube Acquired +
Google Yahoo! Acquired -

Microsoft Powerset Acquired +
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Sources of relation extraction features

I Surface tokens and their shapes

I Part of speech and chunk tags

I Constituency and dependency parses

I Word, type, relation embeddings (later)
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Surface Tokens

The tokens around and in-between the two entities often hold
strong clues for relationship extraction.

〈Company〉 Kosmix 〈/Company〉 is located in the 〈Location〉
Bay Area 〈/Location〉

A “is situated” relationship between a Company entity and
Location entity indicated by token “located” and bigram tokens
“located in”

. . . the Center for Disease Control and Prevention, which is in
the front line of the world’s response to the deadly 〈Disease〉
Ebola 〈/Disease〉 epidemic in 〈Location〉 Zaire 〈/Location〉,

A “outbreak” relationship between a disease and location is
indicated by keyword “epidemic”.
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Part of speech tags

Verbs in a sentence are key to defining the relationship between
entities, that are typically nouns or noun phrases.

〈Location〉 The University of Helsinki 〈/Location〉 hosts
〈Conference〉 ICML 〈/Conference〉 this year.

Word “hosts” as a verb is a clue..

The/DT University/NNP of/IN Helsinki/NNP hosts/VBZ
ICML/NNP this/DT year/NN
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Syntactic parse tree structure

〈Location〉 Haifa 〈/Location〉, located 53 miles from
〈Location〉 Tel Aviv 〈/Location〉 will host 〈Conference〉 ICML
〈/Conference〉 in 2010.

This tree brings “ICML” closer to “Haifa” than “Tel Aviv” because
“Haifa” is the head of the noun phrase “Haifa, located 53 miles
from Tel Aviv” which forms the subject of the verb phrase “will
host ICML in 2010”.
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Syntactic parse tree structure

(ROOT

(S

(NP

(NP (NNP Haifa))

(VP (VBN located)

(PP

(NP (CD 53) (NNS miles))

(IN from)

(NP (NNP Tel) (NNP Aviv)))))

(VP (MD will)

(VP (VB host)

(NP

(NP (NNP ICML))

(PP (IN in)

(NP (CD 2010))))))))
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Dependency graph

Links each word to the words that depend on it

Figure : Dependency parse of a sentence.

I Verb “host” is linked to by both “Haifa” a location entity and
with “ICML” a conference entity and this directly establishes a
close connection between them

I In contrast, the path between ICML and Tel Aviv goes through
“Haifa” and “Located”.
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Weak Supervision Method Type 1: Bootstrapping

I Start with a small table of known facts
Isaac Asimov The Robots of Dawn
David Brin Startide Rising
James Gleick Chaos: Making a New Science
Charles Dickens Great Expectations
William Shakespeare The Comedy of Errors

I Find mentions of known authors and books in the corpus:

The Robots of Dawn is a “whodunit” science fiction novel
by Isaac Asimov, first published in 1983. It is part of
Asimov’s Robot series.

I Induce and evaluate patterns on known data
I *prefix, author, middle, title, suffix*
I <LI><B>title</B> by author (
I <i>title</i> by author (

I Find matches to patterns over corpus (scan/index?)

I Import confident extractions into database
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Weak Supervision Method Type 1: Bootstrapping (2)
I Rinse and repeat

1: input seed tuples {(ei1, ei2), i = 1, . . . , n}
2: while database not big enough do
3: find snippets in corpus where seed tuples are mentioned
4: tag entities in snippets
5: generate new patterns L, t1, C, t2, R or L, t2, C, t1, R
6: apply new patterns over whole corpus
7: import newly extracted tuples into database

I Brin bootstrapped as follows: 5 facts → 199 occurrences → 3
patterns → 4047 proposed facts → 105 more patterns → 9369
proposed facts

I Quality control needed
I Which extracted tuples are likely to be correct?
I Which patterns are sufficiently reliable and useful?
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Weak Supervision Method Type 2: Distant Supervision
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Relation Extraction using Distant Supervision Example

Figure : Example of an Instance Set in Distant Supervision training set

I Disadvantage: Noisy labelled data
I Advantage: Large amount of labelled data at very low cost
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Multi-instance multi-label relation extraction

I [Mintz et al., 2009]: Distant Supervision (DS) as Supervised
Learning. First work on DS.

I [Riedel et al., 2010]: Multi-instance (MI) formulation of DS
I [Surdeanu et al., 2012a]: Multi-instance Multi-label (MIML) DS

formulation
I Multiple relations may hold between entities e1, e2, evidenced in

different sentences
I If a relation r holds between entities e1, e2, then at least one

sentence has to support with evidence
I If relation r does not hold between entities e1, e2, then there can be

no evidence sentence
I Assuming all sentences are evidence of some relation pollutes

training data
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MultiR [Hoffmann et al., 2011]

p(yyy,zzz|xxx; θ) ∝
∏
m

φextract(zm, xm; θ)
∏
r

φjoin
r (yr, zzz)

φjoin
r (1, zzz) =

∨
m~zm = r�

φjoin
r (0, zzz) =

∧
r~zm 6= r�

φextract(zm, xm; θ) = exp (θ · f(zm, xm))
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Neural Networks for Distant Supervision

I Prior to Neural Networks, all techniques utilised carefully
curated NLP features for relation prediction.

I Extraction of traditional NLP features may creep in additional
errors into the pipeline.

I Sentences encountered in relation extraction problem are on an
average more than 40 words, which might lead to higher errors
in NLP feature extraction [Zeng et al., 2015].

I To avoid errors in feature extraction from NLP pipeline, most
modern systems use neural networks for extraction the features.
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Piecewise Convolution Neural Network (PCNN)

I PCNN adapts CNN-based relation extraction [Zeng et al., 2014]
to the distant supervision setting.

I CNNs are used to extract sentence features.

I Sentence features are then processed by a novel piecewise
pooling method to preserve structural features of the sentence.

I Final features are then processed using a linear layer followed by
softmax to generate probability of a given relation for an entity
pair.
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Piecewise Convolution Neural Network (PCNN) (2)

Figure : The architecture of PCNNs used for distant supervised
relation extraction, illustrating the procedure for handling one instance
of a bag and predicting the relation between Kojo Annan and Kofi
Annan (Image from original paper)
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Piecewise Convolution Neural Network (PCNN) (3)
I Let Qi:j ∈ R(j−i+1)×d be the concatenation of word vectors

from qi to qj

I Each word vector qi is concatenation of word2vec embedding
and the position embedding of the word.

I Convolution is a dot product between a filter Ω ∈ Rn×d and each
consecutive n-gram in a stacked sequence of word vectors Q

I Dot product ci ∈ R is defined as:

ci = Ω×Qi−n+1:i, 1 ≤ i ≤ k + n− 1

I Resulting CΩ,Q = 〈c1, . . . , ck+n−1〉 is the embedding for the
sentence.

I Maxpooling helps NN to go from variable sized sentences to
fixed sized representations.
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Piecewise Convolution Neural Network (PCNN) (4)
I To preserve structural features in a sentence, piecewise

maxpooling is performed.

I Maxpooled pΩ,Q ∈ R corresponding to filter w is obtained as
follows.

pΩ,Q = 〈max(s[o,e1]),max(s[e1,e2]),max(s[e2,−1])〉

where s[i,j] is [ci, ci+1 . . . cj ] and e1, e2 are the locations of the
entities in the sentence.

I Maxpooled sentence representation is further processed using
non-linearity layer, linear layer, followed by softmax layer to
predict the relation label. [Zeng et al., 2015]
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PCNN Performance Comparison

Figure : Performance comparison of the PCNN method with traditional
approaches (Image from original paper)

24 / 102



Neural Relation Extraction (NRE) with Instance Attention [Lin et al., 2016a]

I PCNN model used a single sentence with highest relation
probability to predict the label for an instance-set.

I Using single sentence from a bag to predict relation label, misses
crucial information from other sentences for multi-relation
prediction.

I NRE [Lin et al., 2016a] devises an attention mechanism to
aggregate information from various sentence to form a single
instance set representation.

25 / 102



Neural Relation Extraction (NRE) with Instance Attention [Lin et al., 2016a] (2)
I Suppose instance set S contains n sentences x1, x2 . . . xn.

I Representation for this instance set(s) is made as follows:

s =
∑

αixi

I Attention values α is defined as:

αi =
exp(ei)∑
1,k exp(ek)

, ei = xiAr

Where, A,r are parameters to be learned. A is a weighted
diagonal matrix, and r is the query vector associated with
relation r.

I Similar to PCNN, instance set representation (s) is then used as
an input to a linear layer followed by softmax to predict multiple
relations for each entity-pair.
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Neural Relation Extraction with Selective Attention over
Instances

Figure : The architecture of sentence-level attention-based CNN, where
xi & xi indicate the original sentence for an entity pair and its
corresponding sentence representation, αi is the weight given by
sentence-level attention, and s indicates the representation of the
sentence set (Image from original paper)
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Neural Relation Extraction with Selective Attention over Instances

Figure : Performance comparison of the NRE method with traditional
approaches (Image from original paper)
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Bi-GRU based Word Attention Model (BGWA) [Jat et al., 2018]

I More than 50% of the sentences in Riedel Dataset contain
greater than 40 words.

I Not all the words in a sentence express a given relation.

I Bi-GRU representation is combined using word attention.

I Assume uij to be the degree of relevance of the jth word in ith

sentence of the instance set S as follows.

uij = wij ×A× r;

aij =
exp(uij)

M∑
l=1

exp(uil)

ŵij = aij × wij
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Bi-GRU based Word Attention Model (BGWA) [Jat et al., 2018] (2)
I Bilinear operator A determines the relevance of a word for a

relation vector r.
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Figure : Bi-GRU word attention (BGWA) model(Image from original
paper)
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Entity based Word Attention Model (EA) [Jat et al., 2018]

I Information about entity can help the relation extractor.

I Entity-specific attention is applied by concatenating the entity
embedding to each word and applying bi-linear attention.

I [xij , e
emb
k ] is the concatenation of a word and the entity

embedding
ui,j,k = [xij , e

emb
k ]×Ak × rk

ai,j,k =
exp(ui,j,k)∑M
l=1 exp(ui,l,k)

ŵi,j,k = ai,j,k × xi,j
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Entity based Word Attention Model (EA) [Jat et al., 2018] (2)
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Ensemble of Relation Extractors [Jat et al., 2018]

I PCNN, EA and BGWA models have complimentary strenghts.

I Combine the relation probabilities using simple linear model to
achieve better results.

Pi,Ensemble = αPi,PCNN + βPi,BGWA + γPi,EA

Figure : Confidence scores (indicated by color intensity,
darker is better) of models on true labels of 10
randomly sampled instance sets from GIDS dataset.
Rows represent the instance sets and columns
represent the model used for prediction. The heatmap
shows complementarity of these models in selecting the
right relation. Motivated by this evidence, the
proposed Ensemble method combines the three
models, viz., Word Attention (BGWA), Entity
Attention (EA) and PCNN (Image from original paper)
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Ensemble of Relation Extractors [Jat et al., 2018] (2)

Figure : Model performance on Riedel 2010 dataset(Image from original
paper)
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Global Distant Supervision for Relation Extraction [Han, 2016]

I Indirect supervision using joint inference across relation
instances by:
I Consistency between relation and argument.
I Consistency between neighbor instances.
I Consistency between multiple relation labels.

I They use Markov Logic Networks to encode complex
dependencies.

I Markov Logic Networks (MLN) [Richardson and Domingos,
2006]: probabilistic extension of first-order logic
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Global Distant Supervision for Relation Extraction [Han, 2016] (2)

Figure : Dependencies between objects in Knowledge Base(Image from
original paper)
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Global Distant Supervision for Relation Extraction [Han, 2016] (3)

Figure : Precision-Recall curves on KBP dataset developed by [Surdeanu
et al., 2012b].(Image from original paper)
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Distant Supervision for Relation Extraction beyond the
Sentence Boundary [Quirk and Poon, 2017]

I Previous distant supervision approaches are limited to SINGLE
sentence proessing.

I Single sentence approach loses out on identifying some relations
in the long knowledge tail.

I Document level graph representation with dependencies for
adjacent sentences and discourse relations.

I Document Graph consisting of:
I Nodes: words
I Edges: Dependency, Adjacency, Discourse relations.

I Experiments were run on biomedical literature with distant
supervision from Gene Drug Knowledge Database (GDKD).

I Cross-sentence extraction obtained far more unique relations
compared to single-sentence extraction, improving absolute
recall by 89-102%.
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Noise Mitigation for Neural Entity Typing and Relation
Extraction [Yaghoobzadeh et al., 2017]

I The paper handles two types of noise in Information Extraction.
I Noise from Distant Supervision.
I Noise from pipeline input features.

I The work integrates probablilistic output from entity type
prediction into relation extraction.

I Probabilistic input helps the extraction system to compensate
for errors during typing.

I Noise in relation extraction is mitigated using entity type
probabilities.

I Experiments were performed on CF-Figment dataset, derived
from ClueWeb data with FACC1 annotated Freebase entities.

I The area of JOINT-TRAIN under the PR curve is 0.66, as
compared to baseline PCNN’s 0.48 (CF-FIGMENT dataset).
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Reinforcement Learning for Relation Classification from
Noisy Data [Feng, 2018]

I Noise mitigation using Reinforcement Learning to select high
quality sentences which may express a relation from a bag of
sentences in distant supervision.

I Sentence level relation extraction, as opposed to bag level
extraction done typically in DS algorithms.

I Manual Evaluation Results for 300 sentences: Proposed Method
Macro F1= 0.42, Accuracy = 0.64. (baseline CNN+ATT,
Macro F1= 0.29, Accuracy = 0.56)
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Reinforcement Learning for Relation Classification from
Noisy Data [Feng, 2018] (2)

Figure : Sentence level Relation Extraction from Instance Bag.(Image
from original paper)

I Instance selection problem: Given a set with pairs of (sentence,
relation label), relation ri and entity-pairs (hi, ti)

X = (x1, r1), (x2, r2) . . . (xn, rn)
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Reinforcement Learning for Relation Classification from
Noisy Data [Feng, 2018] (3)

I Relation classification problem: Predict semantic relation ri
from sentence xi. Model prediction = P (ri|xi, hi, ti)

Figure : Sentence level Relation Extraction(Image from original paper)
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DSGAN: Generative Adversarial Training for Distant
Supervision Relation Extraction [Qin et al., 2018]

I sentence-level noise reduction: DSGAN learns a sentence
level true-positive generator.

I Generator can be regarded as a special case of reinforcement
learning based noise mitigation.

I A separate generator is trained for each relation.

I Experiments on the cleaned datasets are performed using
baseline from [Lin et al., 2016b].

I DSGAN helps improve the Area Under the Curve (AUC) to
0.264 for PCNN+ATT model as compared to it’s original value
of 0.253.
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DSGAN: Generative Adversarial Training for Distant
Supervision Relation Extraction [Qin et al., 2018] (2)

44 / 102



RESIDE: Improving Distantly-Supervised Neural Relation
Extraction using Side Information [Vashishth et al., 2018b]

I Utilizes additional supervision from Knowledge Graph for
improving distant supervised relation extraction.

I RESIDE uses Graph Convolution Networks (GCN) for modeling
syntactic information and has been shown to perform
competitively even with limited side information

RESIDE Overview:

I Syntactic Sentence Encoding: Uses Bi-GRU and GCN for
encoding each sentence.

I Side Information Acquisition: Utilizes additional supervision
from KBs and Open IE methods for getting relevant side
information.

I Instance Set Aggregation: Attention over sentences encoding
to get a representation for the entire bag.
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RESIDE: Side Information

Matt Coffin , executive of lowermybills , a company 
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I Relation Alias Side Information: Extract relation phrases
between target entities and links them to KG based on their
closeness in embedding space.

I Entity Type Side Information: Utilizes entity type information
for KG for putting constraints on predicted relation.
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RESIDE: Improving Neural DS Relation Extraction using
Side Information [Vashishth et al., 2018b]
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RESIDE: Improving Distantly-Supervised Neural Relation
Extraction using Side Information [Vashishth et al., 2018b]
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Figure : Comparison of Precision-recall curve.
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Datasets for Distantly Supervised Relation Extraction

Dataset # relation # sentences # entity-pair

Reidel2010 Dataset [Riedel et al., 2010]

Train 53 522,611 281270

Test 53 172,448 96,678

GIDS Dataset [Jat et al., 2018]

Train 5 11297 6498

Dev 5 1864 1082

Test 5 5663 3247

Table : Statistics of various datasets available for Distantly Supervised
Relation Extraction.
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Resources

I Datasets:
I NYT dataset [Riedel et al., 2010]:

https://github.com/thunlp/NRE
I Google-IISc (GIDS) dataset [Jat et al., 2018]: https:

//github.com/SharmisthaJat/RE-DS-Word-Attention-Models

I Source Code:
I NRE [Lin et al., 2016b]: https://github.com/thunlp/NRE
I Word Attention Models [Jat et al., 2018]: https:

//github.com/SharmisthaJat/RE-DS-Word-Attention-Models
I RL for RE [Feng, 2018]:

https://github.com/JuneFeng/RelationClassification-RL
I Noise Mitigation [Yaghoobzadeh et al., 2017]:

https://github.com/hayy2017/noise mitigation
I RESIDE: https://github.com/malllabiisc/RESIDE
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Two Views of Knowledge

I The goal is to embed entities, types and relations, based on
mostly-sound but largely-incomplete KGs fine types

I Embeddings can help many tasks, e.g., knowledge base
completion (KBC), more accurate or extended fine type tagging
or entity linking, inferring paraphrasing, entailment, or
contradiction, etc. 52 / 102



Tasks and datasets for KG/KB embedding

WN18: 41k entities (WordNet synsets), 18 relation types
(hypernymy, synonymy, . . . ), folds 141k/5k/5k

FB15k: 15k Freebase entities, 1345 relation types, folds
483k/50k/59k

FbSnapshots: Two snapshots of Freebase some time interval apart;
removes sampling idiosyncrasies

NYT+FB: Freebase triples, plus dependency path-based textual
relations from New York Times; entity mentions aligned with
FB entity IDs; 25k entities, 4k relation types

FB15k+ClueWeb12: Corpus is ClueWeb12 with Google entity
annotations

I WN18, FB15k, FbSnapshots used for knowledge base
completion (KBC)

I Algorithm fits model using train and dev folds; ranks all other
triples; those in eval fold are “relevant” docs; use ranking
performance measures like MAP, MRR

I NYT+FB can be used for jointly embedding entities and
relations informed by both KG and text
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Structured embedding (SE)

I Entity can act as subject or object

I Accordingly each entity e gets two vectors ~es, ~eo
I Each relation r is also associated with two matrices Mrs,Mro

I If Mrs~es and Mro~eo are “close”, then (es, r, eo) is more likely,
e.g.,

Pr(es, r, eo) = σ((Mrs~es) · (Mro~eo))

I Or some decreasing function of ‖Mrs~es −Mro~eo‖
I In words, each relation has two associated projections that bring

participating entities close after projection

I Negative sampling: if (es, r, eo) holds, replace with (uniformly?)
randomly sampled (e′s, r, e

′
o) and assume these do not hold

I (Exactly one perturbed in each negative instance, not both)

I We want ‖Mrs~es −Mro~eo‖ � ‖Mrs~e
′
s −Mro~e

′
o‖
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Structured embedding (SE) (2)
I Let γ > 0 be a margin hyperparameter

I Loss is defined as∑
(es,eo)

∑
(e′s,e

′
o)

max
{
0, ‖Mrs~es −Mro~eo‖+ γ − ‖Mrs~e

′
s −Mro~e

′
o‖
}

I What would happen if no margin were used (γ = 0)?

I Nonconvex; use gradient descent
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TransE

I Each entity e associated with one vector ~e

I Each relation r associated with one vector ~r

I Model: if (es, r, eo) holds, expect ~es + ~r ≈ ~eo

I As with SE, perturb to e′s, e
′
o and expect

‖~es + ~r − ~eo‖ � ‖~e′s + ~r − ~e′o‖
I And therefore the loss to minimize is∑

(es,eo)

∑
(e′s,e

′
o)

max
{
0, γ + ‖~es + ~r − ~eo‖ − ‖~e′s + ~r − ~e′o‖

}
I Fewer parameters than SE

I Cannot model many-to-one, one-to-many, or many-to-many
relations
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TransR and STransE

I Mixes up projection and translation

I In TransR, a single projection matrix Mr is associated with each
r, and applied to both ~es and ~eo

I Each relation r also associated with translation ~vr

I We expect Mr~es + ~vr ≈ Mr~eo if (es, r, eo) is valid in the KG

I STransE keeps Mrs distinct from Mro as in SE, but retains the
translation ~vr of TransR

I I.e., we expect Mrs~es + ~vr ≈ Mro~eo if (es, r, eo) is valid in the
KG

I Loss and training similar to SE and TransE
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TransH

I Each relation r associated with
I A hyperplane defined by unit normal vector pr
I A translation vector dr as in TransE

I Project es on to hyperplane (“es ↓ pr”), translate by dr,
compare with eo ↓ pr

I Consider es, eo, pr with their tails at the origin

I es ↓ pr = es − (es · pr)es, likewise for eo
I ∆(es, r, eo) = ‖(es ↓ pr) + dr − (eo ↓ pr)‖2
I Again, do pairwise training via perturbation: expect

∆(es, r, eo) � ∆(e′s, r, e
′
o)
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ITransF [Xie et al., 2017]

I STransE uses too many parameters per relation which is not
good for rare relations

I ITransF allows parameter sharing among relations by using a set
of underlying ”concept” matrices stacked as tensor D

I Each relation r is associated with two attention vectors αrs and
αro

I Mrs = αrsD and Mro = αroD

I We expect Mrses + r ≈ Mroeo for valid triples in KG

I Loss and training similar to STransE
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CP and Rescal decompositions

I Suppose es, eo are column vectors

I Form outer product matrix ese
>
o ∈ RD×D

I Makes explicit feature crosses

I Relation r represented by Mr ∈ RD×D

I Confidence that (es, r, eo) holds in KG is large if Mr • (ese>o ) is
large, and vice versa, where • is elementwise dot-product∑

i,j Mr[i, j]es[i]eo[j] = e>s Mreo

I In general e>s Mreo 6= e>o Mres, so asymmetry can be supported

I Some systems prefer a diagonal (therefore symmetric) matrix for
Mr to reduce trainable weights . . . DistMult

I If we stack up the Mrs over all relations r, we get a 3-axis
tensor MMM ∈ RD×D×R

I If r, r′ hold (and not hold) frequently between es, eo, their
“plates” in MMM should be similar
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CP and Rescal decompositions (2)
I The 2-axis regular matrix analog would be, some rows (or

columns) are similar to, or linearly dependent on, other rows (or
columns)

I In which case, it would have low(er than full) rank

I Factorization via SVD reveals rank of a 2-axis matrix

I Defining and estimating rank of a tensor are more tricky

I Candecomp/Parafac is one approximate decomposition scheme:

XXX ≈
I∑

i=1

aaai ⊗ bbbi ⊗ ccci

i.e., X[`,m, n] =
∑
i

ai[`]bi[m]ci[n]

where XXX ∈ RL×M×N and aaai ∈ RL, bbbi ∈ RM , ccci ∈ RN and I is
our control on the “rank” of approximating XXX
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CP and Rescal decompositions (3)
I RESCAL — 3-axis tensor factorization

I Assume N entities, R relations, D is the embedding dimension

I In tensor notation,

XXX ≈MMM ×1 A×2 A

where XXX ∈ RN×N×R,MMM ∈ RD×D×R, A ∈ RN×D
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CP and Rescal decompositions (4)
I For the rth plate,

X[r, :, :] ≈ A>M [r, :, :]A

I Overall loss objective to minimize is

argmin
A,MMM

‖XXX −MMM ×1 A×2 A‖2 + λA‖A‖2 + λM‖MMM‖2

I Overall non-convex, use alternating least-squares
I Fix A and improve MMM
I Fix MMM and improve A

I Can use SGD or batch solvers

I Quite a bit more compute-intensive than SVD/NMF style matrix
decomposition
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Asymmetry, antisymmetry, transitivity

I Entities are almost always single points/vectors

I Relations are translations (possibly after projection) . . .

I . . . or an inner product matrix (e.g., DistMult)

I One algebraic structure to fit all relation types
I But relations are diverse

I Sibling-of is symmetric
I Hypernym is asymmetric
I Parent-of is antisymmetric
I Subtype-of is transitive
I Citizen-of is general many-to-few
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ComplEx [Trouillon et al., 2016]

I Entities and relations are modeled as vectors in Complex domain

I Confidence of correctness of a triple is proportional to the
complex dot product between es and eo weighted by r

Pr(es, r, eo) = σ(<(〈r, es, eo〉))

I Similar to DistMult but in Complex domain
I eo is complex conjugate2 of eo
I <(·) is the real part

I Allows handling symmetric, asymmetric and anti-symmetric
relations together

I Logistic loss for training

2a+ ib = a− ib
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HolE : Holographic Embedding [Nickel et al., 2016b]

I Entities and relations are modeled as vectors similar to DistMult

I Model is motivated by holographic models of associative memory
and it learns compatibility between relations and entity pairs

I Confidence of correctness of a triple is proportional to
r>(es ? eo) where es ? eo represents the circular correlation
between vectors es and eo and

[es ? eo]k =

n−1∑
i=0

esieo(k+i)modn

I ? is asymmetric, thus HolE allows asymmetric relations

I Logistic loss or pair-wise ranking loss can be used for training

I Algebraically equivalent [Hayashi and Shimbo, 2017] to
ComplEx!

I Neither models transitivity, important for instance-of and
subtype-of relations in KG
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Order embeddings [Vendrov et al., 2015]

I Specialized to represent partial orders like e ∈ t and t1 ⊆ t2,
denoted uniformly as x1 ≺ x2

I Embed each x to vector xxx

I If x1 ≺ x2, assert xxx1 ≤ xxx2, elementwise

I E.g., by assessing a hinge loss ‖(xxx1 − xxx2)+‖1, where
(aaa)+ = (max{0, ai}) is an elementwise ReLU

I Negative sampling as usual: pick x1 ≺ x2, perturb either to get
x′1 6≺ x′2; no checking for false negative

I Let E(x1, x2) = ‖(xxx1 − xxx2)+‖1
I Loss function is:∑

x1≺x2

E(x1, x2) +
∑

x1 6≺x2

max {0, γ − E(x1, x2)}

where γ is a margin
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ConvE [Dettmers et al., 2018]

I Uses multi-layer CNN to generate deep and more expressive
features as compared to shallow features generated by most of
the existing models

I Entities and Relations are modeled as vectors

I Parameter Efficient (uses 8x fewer parameters than DistMult to
achieve similar performance)

I Allows cross-dimensional interaction of vectors, similar to HolE
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Poincaré Embedding [Nickel and Kiela, 2017]

I Uses Hyperbolic space (n-dimensional Poincaré ball) instead of
Euclidean space

I The hyperbolic geometry allows to capture hierarchy and
similarity simultaneously

I The structural bias induced by hyperbolic space results in
improved generalization performance
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The menagerie
Model Score function s(es, r, eo)

SE ‖Mrses −Mroeo‖2
TransE ‖es + vr − eo‖2
STransE ‖Mrses + vr −Mroeo‖2
TransR ‖Mres + vr −Mreo‖2 Mrs = Mro = Mr

DistMult (Maximize) e>s Mreo Mr diagonal
TransH ‖es − (es · pr)es + dr − eo + (eo · pr)eo‖2 ‖pr‖2 = 1
TransD ‖(pre>s + I)es + dr − (pre

>
o + I)eo‖2

NTN u>r tanh(e>s MMM reo +Mrses +Mroeo + br) MMM r ∈ RD×D×K

ConvE f(vec(f([es; vr] ∗ ω))W )e0 f:activation function

I Who is better than who?
I Just check the publication date!
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Performance on generic link prediction
Method WN18 FB15k

MR MRR H@10 MR MRR H@10
ConvE 504 94.2 95.5 64 74.5 87.3
ITransF 223 95.2 77 81.4
ComplEx 94.1 94.7 69.2 84
STransE 244 94.7 69 79.7
HolE 93.8 94.9 52.4 73.9
TransR 225 92 77 68.7
TransH 303 86.7 87 64.4
DistMult 82.2 93.6 65.4 82.4
TransE 251 45.4 93.4 125 38.0 47.1

I Yet top predictions show spectacular type errors [Jain et al.,
2018]3

Subject s Relation r Gold Object o Prediction
Howard Leslie Shore follows-religion Jewism (religion) Walk Hard (film)
Spyglass Entertainment headquarter-located-in El lay (location) The Real World (tv)
Les Fradkin born-in-location New York (location) Federico Fellini (person)
Eugene Alden Hackman studied Rural Journalism Loudon Wainwright
Chief Phillips (film) released-in-region Yankee land (location) Akira Isida (person)

3Also KG4IR@SIGIR talk
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Embeddings from combining KG and text

I TL;DR Use convnet on dependency path to get compositional
embedding for r, then combine using DistMult with entity
embeddings

I Example dependency paths for (person, founded, organization)
Textual Pattern Count

SUBJECT
appos−−−→founder

prep−−→of
pobj−−→OBJECT 12

SUBJECT
nsubj←−−−co-founded

dobj−−→OBJECT 3

SUBJECT
appos−−−→co-founder

prep−−→of
pobj−−→OBJECT 3

SUBJECT
conj−−→co-founder

prep−−→of
pobj−−→OBJECT 3

SUBJECT
pobj←−−with

prep←−−co-founded
dobj−−→OBJECT 2

SUBJECT
nsubj←−−−signed

xcomp−−−→establishing
dobj−−→OBJECT 2

SUBJECT
pobj←−−with

prep←−−founders
prep−−→of

pobj−−→OBJECT 2

SUBJECT
appos−−−→founders

prep−−→of
pobj−−→OBJECT 2

SUBJECT
nsubj←−−−one

prep−−→of
pobj−−→founders

prep−−→of
pobj−−→OBJECT 2

SUBJECT
nsubj←−−−founded

dobj−−→production
conj−−→OBJECT 2

SUBJECT
appos←−−−partner

pobj←−−with
prep←−−founded

dobj−−→production
conj−−→OBJECT 2

SUBJECT
pobj←−−by

prep←−−co-founded rcmod←−−−OBJECT 1

SUBJECT
nn←−co-founder

prep−−→of
pobj−−→OBJECT 1

SUBJECT
dep−−→co-founder

prep−−→of
pobj−−→OBJECT 1

SUBJECT
nsubj←−−−helped

xcomp−−−→establish
dobj−−→OBJECT 1

SUBJECT
nsubj←−−−signed

xcomp−−−→creating
dobj−−→OBJECT 1

Table 1: Textual patterns occurring with entity pairs in a person/organizations founded relationship. The
count indicates the number of training set instances that have this KB relation, which co-occur with each
textual pattern.

SUBJECT
appos���! co-founder

prep��! of
pobj��! OBJECT

vi = V ei

hi = tanh(W�1vi�1 + W 0vi + W 1vi+1 + b)

r = max{hi}

1

Figure 4: The convolutional neural network architecture for representing textual relations.

fined as:

L(TKB; Θ) + τL(Ttext; Θ) + λ‖Θ‖2,

where λ is the regularization parameter, and τ is
the weighing factor of the textual relations.

The parameters of all models are trained using a
batch training algorithm. The gradients of the ba-
sic models are straightforward to compute, and the
gradients of the convolutional network parameters
for the CONV-augmented models are also not hard
to derive using back-propagation.

4 Experiments

Dataset and Evaluation Protocol
We use the FB15k-237 4 dataset, which is a sub-
set of FB15k (Bordes et al., 2013) that excludes
redundant relations and direct training links for
held-out triples, with the goal of making the task
more realistic (Toutanova and Chen, 2015). The
FB15k dataset has been used in multiple stud-
ies on knowledge base completion (Wang et al.,
2014b; Yang et al., 2015). Textual relations for

4Check the first author’s website for a release of the
dataset.

1504
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Embeddings from combining KG and text (2)
I Composing text into M of DistMult

Textual Pattern Count

SUBJECT
appos−−−→founder

prep−−→of
pobj−−→OBJECT 12

SUBJECT
nsubj←−−−co-founded

dobj−−→OBJECT 3

SUBJECT
appos−−−→co-founder

prep−−→of
pobj−−→OBJECT 3

SUBJECT
conj−−→co-founder

prep−−→of
pobj−−→OBJECT 3

SUBJECT
pobj←−−with

prep←−−co-founded
dobj−−→OBJECT 2

SUBJECT
nsubj←−−−signed

xcomp−−−→establishing
dobj−−→OBJECT 2

SUBJECT
pobj←−−with

prep←−−founders
prep−−→of

pobj−−→OBJECT 2

SUBJECT
appos−−−→founders

prep−−→of
pobj−−→OBJECT 2

SUBJECT
nsubj←−−−one

prep−−→of
pobj−−→founders

prep−−→of
pobj−−→OBJECT 2

SUBJECT
nsubj←−−−founded

dobj−−→production
conj−−→OBJECT 2

SUBJECT
appos←−−−partner

pobj←−−with
prep←−−founded

dobj−−→production
conj−−→OBJECT 2

SUBJECT
pobj←−−by

prep←−−co-founded rcmod←−−−OBJECT 1

SUBJECT
nn←−co-founder

prep−−→of
pobj−−→OBJECT 1

SUBJECT
dep−−→co-founder

prep−−→of
pobj−−→OBJECT 1

SUBJECT
nsubj←−−−helped

xcomp−−−→establish
dobj−−→OBJECT 1

SUBJECT
nsubj←−−−signed

xcomp−−−→creating
dobj−−→OBJECT 1

Table 1: Textual patterns occurring with entity pairs in a person/organizations founded relationship. The
count indicates the number of training set instances that have this KB relation, which co-occur with each
textual pattern.

SUBJECT
appos���! co-founder

prep��! of
pobj��! OBJECT

vi = V ei

hi = tanh(W�1vi�1 + W 0vi + W 1vi+1 + b)

r = max{hi}

1

Figure 4: The convolutional neural network architecture for representing textual relations.

fined as:

L(TKB; Θ) + τL(Ttext; Θ) + λ‖Θ‖2,

where λ is the regularization parameter, and τ is
the weighing factor of the textual relations.

The parameters of all models are trained using a
batch training algorithm. The gradients of the ba-
sic models are straightforward to compute, and the
gradients of the convolutional network parameters
for the CONV-augmented models are also not hard
to derive using back-propagation.

4 Experiments

Dataset and Evaluation Protocol
We use the FB15k-237 4 dataset, which is a sub-
set of FB15k (Bordes et al., 2013) that excludes
redundant relations and direct training links for
held-out triples, with the goal of making the task
more realistic (Toutanova and Chen, 2015). The
FB15k dataset has been used in multiple stud-
ies on knowledge base completion (Wang et al.,
2014b; Yang et al., 2015). Textual relations for

4Check the first author’s website for a release of the
dataset.

1504

I (Presumably LSTMs have been tried too)

I Model p(eo|es, r; Θ) =
exp(f(es, r, eo; Θ))∑

e′∈Neg(es,r,?)
exp(f(es, r, e′; Θ))

I f is the function implemented by the convnets and a final
DistMult: ~e>s diag(r)~eo
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Embeddings from combining KG and text (3)
I Two potential issues

I Although Neg is sampled from all possible negative e′, denominator
not scaled suitably

I Positive term not included in denominator

I Θ includes Mr from KG, convnet weights from corpus, and ~e

I Overall objective to maximize for each source is

L(T ; Θ) =
∑

(es,r,eo)∈T

log p(eo|es, r; Θ) +
∑

(es,r,eo)∈T

log p(es|eo, r; Θ)

where T ∈ {TKG, Tcorpus}
I Global objective to maximize is

L(TKG; Θ) +♣L(Tcorpus; Θ)−♠‖Θ‖2

convnets?
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Universal schema [Riedel et al., 2013]

I Another popular technique to combine KG- and corpus-based
knowledge inference

I Based on low-rank matrix factorization

I Each row corresponds to an entity pair 〈ei, ej〉
I A column can correspond to

I A canonical relation r in KG, such as born-in, or
I A non-canonicalized, textually expressed relation such as “ei is a

native of ej” or “ei left his birthplace ej”

I In the simpler version, let each distinct textual expression be
given its own column
I Separate columns for “is a native of” and “originally hailed from”

I Embedding uei,ej for each entity pair, vborn-in for each canonical
relation, and v“is a native of” for each distinct textually expressed
relation

I Matrix factorization expected to make
vborn-in ≈ v“is a native of” ≈ v“originally hailed from”
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KG Geometry [Chandrahas et al., 2018]

I Studies the geometry (i.e. arrangement of vectors in vector
space) of KG embeddings generated by various methods

I Demonstrates a consistent difference between the geometry of
Additive Models (e.g. TransE, TransR) and Multiplicative
Models (e.g. DistMult, ComplEx) across multiple datasets
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KG Geometry [Chandrahas et al., 2018]

I Geometry of Multiplicative Models are sensitive to
#negative-samples while Additive models are not

I Multiplicative models have higher conicity than additive models
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HyTE: Temporal KG Embedding [Dasgupta et al., 2018]

I Knowledge (entities and relationships) change over time
I Infuses temporal information into KG Embedding by having

separate hyper-planes for different time-intervals
I Use translational models (e.g. TransE) within each hyper-plane
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HyTE: Temporal KG Embedding [Dasgupta et al., 2018]

I Allows link as well as temporal scope prediction and outperforms
existing methods on YAGO11K and WikiData12k datasets

I The learnt time vectors demonstrate temporal consistency where
similar time-intervals form clusters
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Outline

13:00-13:15 Overview and motivation

13:15-13:45 Case study: NELL

13:45-14:00 Bootstrapped Entity Extraction

14:00-15:00 Open Relation Extraction & Canonicalization

15:00-15:30 Coffee Break

15:30-16:15 Distantly-supervised Neural Relation Extraction

16:15-16:45 Knowledge Graph Embeddings

16:45-17:00 Conclusion & QA
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Timeline: some highlights

−∞ Hidden Markov models

1992 Hearst patterns [Hearst, 1992]

1998 Duality in pattern-relationship extraction [Brin, 1998]

2000 Snowball = DIPRE + confidence scores [Agichtein and
Gravano, 2000]

2001 Conditional Random Fields [Lafferty et al., 2001]

2001 Turney’s PMI [Turney, 2001]

2001 SemTag and Seeker [Dill et al., 2003]

2000–now Many systems for labeling token spans [Lafferty et al.,
2001] or 2d regions [Zhu et al., 2007] with entity types

2001–2002 Search in graph data models [Bhalotia et al., 2002,
Agrawal et al., 2002, Hristidis et al., 2003]

2002–2003 Personalized and topic-specific PageRank[Jeh and
Widom, 2003, Haveliwala, 2002]
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Timeline: some highlights (2)
2004 ObjectRank[Balmin et al., 2004]

2004 KnowItAll ≈ Hearst patterns + list extraction + a few more
tricks [Etzioni et al., 2004]

2005 Relation extraction via dependency path kernels [Bunescu
and Mooney, 2005]

2007 TextRunner [Banko et al., 2007] and ExDB [Cafarella et al.,
2007]

2006–2007 Type+proximity search, EntityRank[Chakrabarti
et al., 2006, Cheng et al., 2007]

2007–2008 Proximity search in graphs [Chakrabarti, 2007, Sarkar
et al., 2008]

2006–2009 Entity disambiguation [Bunescu and Pasca, 2006,
Mihalcea and Csomai, 2007, Cucerzan, 2007, Milne and
Witten, 2008, Kulkarni et al., 2009]
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Timeline: some highlights (3)
2007–2009 Searching the structured-unstructured divide [Kasneci

et al., 2008, Suchanek et al., 2007]

2010– Never ending language learning (NELL, @CMU)

2011–2012 MultiR, MIML-RE [Surdeanu et al., 2012a]

2013–2014 Word2vec [Mikolov et al., 2013], GloVE [Pennington
et al., 2014]

2014– Continuous knowledge representation for KBC [Bordes
et al., 2013]

2011, 2015 Path-ranking algorithm, KG+corpus for relation
extraction [Lao and Cohen, 2010, Toutanova et al., 2015]

2004–2006, 2009, 2013–2016 KG+corpus in QA

2016– RL + Relation Extraction

2015– Neural Distant Supervision

2012– Large-scale KG applications

. . .
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Other related recent tutorials

I WSDM 2018 and AAAI 2017 tutorials by Pujara and Singh:
https://kgtutorial.github.io/

I SIGIR 2018 tutorial by Chakrabarti: https://goo.gl/vRkwxZ,
CIKM 2017 https://goo.gl/A6ZqBq

I Tutorials by Xiang Ren et al.
I CIKM 2017: https://goo.gl/rpD2Tg
I NAACL 2018: https://goo.gl/D2HWf1
I WWW 2018: https://goo.gl/JCwjpw

I WWW 2015 tutorial by Yago group: http://resources.mpi-i
nf.mpg.de/yago-naga/www2015-tutorial/

I VLDB 2014 tutorial by Suchanek and Weikum: http://resou
rces.mpi-inf.mpg.de/yago-naga/vldb2014-tutorial/

84 / 102

https://kgtutorial.github.io/
https://goo.gl/vRkwxZ
https://goo.gl/A6ZqBq
https://goo.gl/rpD2Tg
https://goo.gl/D2HWf1
https://goo.gl/JCwjpw
http://resources.mpi-inf.mpg.de/yago-naga/www2015-tutorial/
http://resources.mpi-inf.mpg.de/yago-naga/www2015-tutorial/
http://resources.mpi-inf.mpg.de/yago-naga/vldb2014-tutorial/
http://resources.mpi-inf.mpg.de/yago-naga/vldb2014-tutorial/


The End

August 20, 2018
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