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1 Introduction

Question Answering has been an interesting task in AI and Machine learning. A success-
ful question answering system indicates the ability of machine to understand underlying
concepts. Allen AI conducted a challenge spanning over 4 months time. The challenge
consisted of objective type science subject questions for 8th grade students.

Members of the MALL Lab (http://malllabiisc.github.io/) at the Indian Insti-
tute of Science (IISc), Bangalore, headed by Partha Talukdar (http://talukdar.net/),
participated in the challenge with team name textbfwhatsinateamname. Owur research is
in Machine Reading which is very relevant to the challenge and hence we got interested.

A Working demo of our system is available @ http://mall-lab.serc.iisc.in/
ensemble/.

2 Approach

The challenge had questions of varied difficulty levels. Some questions were straightfor-
ward fact based questions, while some needed natural language understanding and reason-
ing capabilities. We approached the solution using ensemble of various models. Models
complemented each other and were designed to perform well on different kind of questions.
Our training approach was a mix of supervised and un-supervised methods. The ensemble
and representation learning approaches (M4) were supervised, while the IR (M1) and PMI
(M3) approaches were unsupervised.We used CK12 and other similar textbooks, multiple
existing knowledge graphs (e.g., conceptnet, wordnet, wikidata, etc), Wikipedia science
articles, Science related web corpus. We think sentence-level micro-indexing is one of the
novel aspects of our approach. Overall, an ensemble involving multiple loosely correlated
models seems interesting. Incorporation of a custom-built knowledge graph with millions
of nodes and edges focused on the school-level science domain is also promising.

For the ensemble, we used a hierarchical approach to group our models and generate
predictions.

We first pruned our models with very correlated (>90%) output predictions and buck-
eted the rest according to their underlying mechanism (e.g all IR/solr models were in one
bucket). Then, a classifier was trained over each of those buckets to generate a unified



confidence score. This confidence score for each bucket was used in the next level as input
features for a final classifier. We used logistic regression on question/option pairs at each
level.

Each model gave an un-normalized score for the option candidates, the scales of which
hindered the learning process. To counter this, we generated 3 normalized versions (sum
normalization, exp normalization, and zero mean-unit variance normalization) of the score
and used them in place of the raw score. Normalizing the scores from each model resulted
in the largest boost. The hierarchical groupings were particularly helpful as passing all
models in a one-level approach made optimizing parameters difficult and resulted in a dip
in performance. Architecture of ensemble model is given in Figure 1.

3 Models

We used an ensemble method consisting of the following approaches:
— M1: Solr and Elasticsearch-based information retrieval
— M2: textual entailment model

— M3: a statistical association-based model (PMI)

— M4: a neural network-based representation learning approach over question and an-
swer pairs

— MB5: inference over a knowledge graph constructed out of existing knowledge graphs
and by running OpenlE over large unstructured text data

— M6: retrieval over the constructed KG

— M7: matrix factorization for question type prediction
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Figure 1: System Architecture

We used multiple variants of each of the above approaches. We also experimented
with a variety of other techniques which ultimately didn’t make it to the final model:
learning a ranking function, multi-relational inference using subgraph features, natural logic
inference, biased personalized pagerank, learned entailment model, tensor factorization for
finer question analysis, etc. Detailed explanation of each model follows.

3.1 Solr and Elasticsearch-based information retrieval

We started with document level indexing. Later we observed that for a given question
option pair if a valid supporting text is present in the corpus then in majority of the cases
the supporting text consists of very few consecutive sentences. Keeping this observation in
mind we shifted our attention from document level to sentence level indexing. We indexed
a window of K sentences with a jump size of 1 sentence (meaning our window slides one
sentence at a time), where value of K is in the set (1,2,3,4,5). This approach of indexing
gave significantly better results comapared to document level indexing. We stemmed the
corpus and removed stopwords (gave noticeable boost).

Instead of directly using max score from solr we used discounted score of top 10 valid
supporting texts.

We built three models of solr:

e model 1: Uses window size of 1,2,3,4 and 5. Good for all types of questions.



e model 2: Uses window size of only 1 and 2. This model performs best on easy and
medium difficulty questions. This model has the best overall accuracy.

e model 3: Uses window size of 1 and 2. This model considers only last sentence of
a question. This model gives significant boost for questions where first part of the
question is not relevant to the actual question.

We observed that using an ensemble of this 3 solr model gives better score compared
to any individual model.

3.2 Textual Entailment

This unsupervised approach ranked answers based on how well they were entailed by the
question+supporting_text. We used a textual entailment model provided by Excitement
open platform[2] for the task. Among all the pre-trained models provided by the platform,
MaxFEntClassificationEDA _Base4+OpenNLP_EN, performed the best. Question along with
the supporting text (IR) was used to entail the answer. The answer which entailed with
most confidence was selected as the right answer. This approach gave a total of 36 %
accuracy on the train data of task. We tried various text and hypothesis pair for the
entailment task. The pair which gave best accuracy consisted of “Question and Supporting
text” as text and “Answer option” as the hypothesis pair.

3.3 Statistical Association-Based Model (PMI)

We built a PMI model by supervised learning on the entire corpus (book, wiki etc.). In
test scenario, given a question and answer pair, pair-wise-word PMI score is aggregated.
PMI score was then used as confidence on the answer option.

3.4 Neural Nets for Representation Learning

The idea behind this model was to learn a representation for the question and option
pairs, and calculate a similarity metric between those representations to score each option.
The features utilized were: - similarity between question and answer embedding (from
rnnlm [4]) - pairwise average similarity between words in the question and answer text -
similarity between the average word embeddings of the question/option text We used both
euclidean and cosine distance as similarity metrics. These features were fed to a classifier
that predicted the answer among the 4 options presented.

Generating the embeddings themselves was an unsupervised approach (we trained
word2vec models [3], and recurrent neural network language models), and aggregating
the various similarity metrics was supervised. We tried various models for the aggregation
step including SVM-rank, logistic regression, and neural networks (NN). We settled on a
NN for the learning phase.



To generate the question/option embeddings, we trained various embedding models
over multiple corpora (CK12 textbooks, science articles from wikipedia, science articles
from simple wiki, etc). The diversity in the content and style from each source generated
significantly different word embeddings. (the nearest neighbors in each space were different—
textbook data gave simple, topic specific nearest neighbors, whereas pretrained w2v was
more general).

An important observation was that, the predictions of the embedding model were least
correlated with all the other models.

3.5 Matrix factorization for question type prediction

We divided train dataset questions into various types. 6 such types were assumed (reason-
ing, direct, fill in the blanks kind etc.). We used a supervised approach to learn matrix
factors to predict question type. These types were further used to customise weights on
model prediction in the ensemble.

3.6 Background Knowledge/Reasoning

We built a knowledge graph with millions of nodes and edges focused on the school-level
science domain by harvesting data from multiple existing knowledge graphs (e.g., concept-
net, wordnet, wikidata, etc), Wikipedia science articles, Science related web corpus. We
built models to perform inference (e.g., biased personalized pagerank) and retrieval over
this graph. We also experimented with a variety of other more sophisticated inference
methods over this KG, although they didn’t make it to the final submission.

4 Discussion

We profiled the accuracy of each of our models on held-out validation data from develop-
ment dataset. Table 4 lists the accuracy of each model independent of the others. Ensemble
of these models was then able to reach 52.7 % accuracy on the development set.

Model Accuracy on Validation data
Solr_All_Models 49.3 %
Solr_All_Models (with atmost chuck size of 2 sentences) 49.9 %
Solr & Knowledge_base (triples) 48.7%
PMI 41.5 %
Textual Entailment 34 %
SVM (Embeddings) 38.3 %

Table 1: Accuracy of each model used in ensemble on validation data



4.1 Experiments which did not work - Natural Language Inference

We also experimented with Natural Language Inference (NLI) [1]. NLI is a computational
model for textual inference over natural language. Its a mid-way between the textual
inference methods and first-order logic methods. Given a premise and a hypothesis, it
finds the final entailment by composing the atomic entailments of edits over a low-cost
edit sequence from premise to hypothesis. It combines the flexibility of textual entailment
methods with the precision of first-order logic based methods.

Usage: In our data, we had questions with four options each. Initially, we tried to
create four hypothesis’ by pairing up the question with each of the four options. Then using
it as search query, we extracted facts from our corpus using the information extraction
engine(Solr). These facts were used as premises and then NLI system was used to find
the entailment. The option with highest confidence was selected as answer. This method
didn’t work as NLI couldn’t find any relation between the premises and hypothesis for
almost all questions.

Since entailment over longer sentences would be difficult, we tried breaking the question
into sentences and extract the main question sentence. The extracted question sentence is
used as hypothesis, while rest of the sentences in the question are added as premises along
with other facts retrieved the information extraction engine. It increased the coverage a
bit but still NLI wasn’t able to find answers for most of the questions.

While NLI was able to handle textual inferences well (eg FraCasS test suite), it was not
very impressive in incorporating facts probably due to limited information about domain-
specific terms and usage of words. Also, it became really slow when the edit sequence
between premise and hypothesis was long and abstained in most of these cases.
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Real World Testing: We made our demo publicly available on open science day at IISc.
Most of the participants were school students (better at answering these set of questions).
Computer answered 483 questions correctly as opposed to 512 correctly answered by hu-
mans (end of the day statistics).

6 Future Directions

There were a number of threads which we couldn’t integrate into our final model due to time
constraint. It would be interesting to see the effect of KB inference, query optimization,
more resources on the final performance of the system.

7 Conclusion

We developed a working system for Allen Al Kaggle challenge. The system utilised an
ensemble based system to answer questions. It gave reasonable performance with a final
rank of 10 among 170 teams worldwide. A Working demo of our system is available @
http://mall-lab.serc.iisc.in/ensemble/.
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