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Identifying groups of strongly correlated variables
through Smoothed Ordered Weighted L1-norms



LASSO: The method of choice for feature selection

Ordered Weighted L1(OWL) norm and Submodular penalties

ΩS : Smoothed OWL (SOWL)



LASSO: The method of choice for feature
selection



Linear Regression in High dimension

Question?

Let x ∈ Rd , y ∈ R and

y = w∗>x + ε ε ∼ N(0, σ2)

From D = {(xi , yi )|i ∈ [n], xi ∈ Rd , yi ∈ R} can we find w∗

X =


x>1
x>2
...
x>n

 ,Y ∈ Rn

X ∈ Rn×d , y ∈ Rn



Linear Regression in High dimension

Least Squares Linear Regression

X ∈ Rn×d , y ∈ Rd :

wLS = argminw∈Rd

1

2
‖Xw − Y ‖2

2

Assumptions

I Labels centered :
∑n

j=1 yj = 0.

I Features normalized : xi ∈ Rd , ‖xi‖2 = 1, x>i 1d = 0.



Linear Regression in High dimension

Least Squares Linear Regression

wLS =
(
X>X

)−1
X>Y and E (wLS) = w ∗

Variance of Predictive error: 1
n
E (‖X (wLS − w ∗)‖2) = σ2 d

n



Linear Regression in High dimension

rank(X ) = d

I wLS is unique

I Poor predictive
performance,
d is close to n

rank(X ) < d

I d > n

I wLS is not unique.
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Regularized Linear Regression

Regularized Linear Regression X ∈ Rn×d , y ∈ Rd ,Ω : Rd → R:

min
w∈Rd

1

2
‖Xw − y‖2

2 s.t. Ω(w) ≤ t

Regularizer: Ω(w)

I non-negative

I Convex function, typically a norm.

I Possibly non-differentiable.



Lasso regression[Tibshirani, 1994]

Ridge: Ω(w) = ‖w‖2
2

I Does not promote
sparsity

I Closed form solution

Lasso: Ω(w) = ‖w‖1

I Encourages sparse
solutions.

I Solve convex
optimization problem



Regularized Linear Regression

Regularized Linear Regression X ∈ Rn×d , y ∈ Rd ,Ω : Rd → R:

min
w∈Rd

1

2
‖Xw − y‖2

2 + λΩ(w)

I Equivalent to the constraint version

I Unconstrained



Lasso: Properties at a glance

Computational

I Proximal methods : IST, FISTA, Chambolle-Pock [Chambolle
and Pock, 2011, Beck and Teboulle, 2009].

I Convergence rate : O(1/T 2) in T iterations.

I Assumption: availability of proximal operator of Ω (Easy for
`1).

Statistical properties[Wainwright, 2009]

I Support recovery (Will it recover the true support ?).

I Sample complexity (How many samples needed ?).

I Prediction error (What is the expected error in prediction ?).



Lasso: Properties at a glance

Computational

I Proximal methods : IST, FISTA, Chambolle-Pock [Chambolle
and Pock, 2011, Beck and Teboulle, 2009].

I Convergence rate : O(1/T 2) in T iterations.

I Assumption: availability of proximal operator of Ω (Easy for
`1).

Statistical properties[Wainwright, 2009]

I Support recovery (Will it recover the true support ?).

I Sample complexity (How many samples needed ?).

I Prediction error (What is the expected error in prediction ?).



Lasso Model Recovery[Wainwright, 2009, Theorem 1]

Setup

y = Xw∗ + ε, εi ∼ N (0, σ2),X ∈ Rn×d

Support of w∗ be S = {j |w∗j 6= 0 j ∈ [d ]}

Lasso

min
w∈Rd

1

2
‖Xw − y‖2

2 + λ‖w‖1



Lasso Model Recovery[Wainwright, 2009, Theorem 1]

Conditions1.

∥∥∥∥X>ScXS

(
X>S XS

)−1
∥∥∥∥
∞
≤ 1− γ, Incoherence with γ ∈ (0, 1],

Λmin

(
1

n
X>S XS

)
≥ Cmin

λ > λ0 ,
2

γ

√
2σ2 log d

n

W.h.p, the following holds:

‖ŵS − w∗S‖∞ ≤ λ
(∥∥∥∥(X>S XS/n

)−1
∥∥∥∥
∞

+ 4σ/
√
Cmin

)

1Define ‖M‖∞ = maxi
∑

j |Mij |
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Lasso Model Recovery: Special cases

Case: X>ScXS = 0.

I The incoherence condition trivially holds, and γ = 1.

I The threshold λ0 is lesser ⇒ The recovery error is lesser.

Case: X>S XS = I .

I Cmin = 1/n, the largest possible for a given n.

I Larger Cmin ⇒ lesser recovery error.

When does Lasso work well?

I Lasso prefers low correlation between support and non-support
columns.

I Low correlation of columns within support lead to better
recovery.
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Lasso Model Recovery: Implications
Setting: Strongly correlated columns in X .

I Correlation between feature i and feature j

ρij ≈ x>i xj

I Large correlation between XS and XSc ⇒ γ is small.

I Large correlation within XS ⇒ Cmin is small.

I The r.h.s. of the bound is large. (loose bound).

I Hence w.h.p., lasso fails in model recovery.
In other words:

I Lasso solutions differ with the solver used.

I Solution is not unique typically.

I The prediction error may not be as worse though [Hebiri and
Lederer, 2013].

Requirements.
I Need consistent estimates independent of the solver.

I Preferably select all the correlated variables as a group.
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Illustration: Lasso under correlation[Zeng and Figueiredo,
2015]

Setting: strongly correlated features.

I {1, . . . , d} = G1 ∪ · · · ∪ Gk , Gm ∩ Gl = ∅, ∀l 6= m

I ρij ≡ |x>i xj | very high (≈ 1) for pairs i , j ∈ Gm.

Toy Example

I d = 40, k = 4.

I G1 = [1 : 10], G2 = [11 : 20],
G3 = [21 : 30], G4 = [31 : 40].

0 20 40
0

2

4

6

Figure: Original signal

Lasso: Ω(w) = ‖w‖1.

I Sparse recovery.

I Arbitrarily selects the variables
within a group.
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Figure: Recovered signal.
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Possible solutions: 2-stage procedures

Cluster Group Lasso [Buhlmann et al., 2013]
I Identify strongly correlated groups G = {G1, . . . ,Gk}

I Canonical Correlation.

I Group selection. Ω(w) =
∑k

j=1 αj‖wGj‖2.

I Select all or no variables from each group.

Goal: Learn G and w simultaneously ?
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Ordered Weighted `1 (OWL) norms

OSCAR2 [Bondell and Reich, 2008]

ΩO(w) =
d∑

i=1

ci |w |(i)

ci = c0 + (d − i)µ,

c0, µ, cd > 0.
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Figure: Recovered: OWL

OWL [Figueiredo and Nowak, 2016]:

I c1 ≥ · · · ≥ cd ≥ 0.

2Notation: |w|(i) : i th largest in |w|.
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Oscar: Sparsity Illustrated

Figure: Examples of solutions:[Bondell and Reich, 2008]

I Solutions encouraged towards vertices.

I Encourages blockwise constant solutions.

I See [Bondell and Reich, 2008].



OWL-Properties

Grouping covariates [Bondell and Reich, 2008, Theorem 1],
[Figueiredo and Nowak, 2016, Theorem 1]

|wi | = |wj |, if λ ≥ λ0
ij .

I λ0
ij ∝

√
1− ρ2

ij .

I Strongly correlated pairs grouped early in the regularization
path.

I Groups: Gj = {i ||wi | = αj}.
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OWL-Issues
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Figure: True model

0 20 40
0

2

4

6

Figure: Recovered: OWL

I Bias for piecewise constant ŵ
I Easily understood through the norm balls.
I Requires more samples to consistent estimation.

I Lack of interpretations for choosing c
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Ordered Weighted L1(OWL) norm and
Submodular penalties



Preliminaries: Penalties on the Support

Goal
Encourage w to have desired support structure.

supp(w) = {i |wi 6= 0}

Idea
Penalty on support [Obozinski and Bach, 2012]:
pen(w) = F (supp(w)) + ‖w‖pp, p ∈ [1,∞].

Relaxation(pen(w)): ΩF
p (w)

Tightest positively homogenous, convex lower bound.

Example: F (supp(w)) = |supp(w)| ⇒ ΩF
p (w) = ‖w‖1. Familiar!

Message: The cardinality function always relaxes to the `1 norm.
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Nondecreasing Submodular Penalties on Cardinality

Assumptions. Denote F ∈ F , if F : A ⊆ {1, . . . , d} → R is:

1. Submodular [Bach, 2011].
I ∀A ⊆ B,F (A∪{k})−F (A) ≥ F (B ∪{k})−F (B).
I Lovász extension: f : Rd → R. (Convex extension

of F to Rd).

2. Cardinality based.
I F (A) = g(|A|) (Invariant to permutations).

3. Non Decreasing.
I g(0) = 0, g(x) ≥ g(x − 1).

Implication: F ∈ F ⇒ F completely specified through g .
Example: Let V = {1, . . . , d}, define F (A) = |A||V \ A|.

Then f (w) =
∑

i<j |wi − wj |.



ΩF
∞ and Lovász extension

Result: Case p =∞ [Bach, 2010]:

ΩF
∞(w) = f (|w |)

I The `∞ relaxation coincides with the Lovász extension in the
positive orthant.

I To work with ΩF
∞, may use existing results of submodular

function minimization.

I ΩF
p not known in closed form for p <∞.



Equivalence of OWL and Lovász extensions: Statement

Proposition [Sankaran et al., 2017]: F ∈ F ,ΩF
∞(w)⇔ ΩO(w)

1. Given F (A) = f (|A|), ΩF
∞(w) = ΩO(w), with

ci = f (i)− f (i − 1).

2. Given c1 ≥ . . . cd ≥ 0, ΩO(w) = ΩF
∞(w) with

f (i) = c1 + · · ·+ ci .

Interpretations

I Gives alternate interpretations for OWL.

I ΩF∞ has undesired extreme points [Bach, 2011].
I Explains piecewise constant solutions of OWL.

I Motivates ΩF
p (w) for p <∞.
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ΩS : Smoothed OWL (SOWL)



SOWL: Definition
Smoothed OWL

ΩS(w) := ΩF
2 (w).

Variational form for ΩF
2 [Obozinski and Bach, 2012].

ΩS(w) = min
η∈Rd

+

1

2

(
d∑

i=1

w2
i

ηi
+ f (η)

)
.

Use OWL equivalance: f (|η|) = ΩF
∞(η) =

∑d
i=1 ci |η|(i),

ΩS(w) = min
η∈Rd

+

1

2

d∑
i=1

(
w2
i

ηi
+ ciη(i)

)
︸ ︷︷ ︸

Ψ(w ,η)

. (SOWL)
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OWL vs SOWL

Case: c = 1d .

I ΩS(w) = ‖w‖1.

I ΩO(w) = ‖w‖1.

Case: c = [1, 0, . . . , 0︸ ︷︷ ︸
d−1

]>.

I ΩS(w) = ‖w‖2.

I ΩO(w) = ‖w‖∞.

Norm Balls
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Figure: Norm balls for OWL, SOWL, for different values of c
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Group Lasso and ΩS

SOWL objective (eliminating η):

ΩS(w) =
k∑

j=1

‖wGj‖√∑
i∈Gj

ci

 .

Denote ηw : denote the optimal η, given w .

Key differences:

I Groups defined through ηw = [δ1, . . . , δ1︸ ︷︷ ︸
G1

, . . . , δk , . . . , δk︸ ︷︷ ︸
Gk

].

I Influenced by the choice of c.
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Open Questions:

1. Does ΩS promotes grouping of correlated variables as ΩO ?
I Are there any benefits over ΩO ?

2. Is using ΩS computationally feasible ?

3. Theoretical properties of ΩS vs Group Lasso?
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Grouping property ΩS : Statement

Learning Problem: LS-SOWL

min
w∈Rd ,η∈Rd

+

1

2n
‖Xw − y‖2

2 +
λ

2

d∑
i=1

(
w2
i

ηi
+ ciη(i)

)
︸ ︷︷ ︸

Γ(λ)(w ,η)

.

Theorem: [Sankaran et al., 2017]

Define the following:

I
(
ŵ (λ), η̂(λ)

)
= argminw ,ηΓ(λ)(w , η).

I ρij = x>i xj .
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ŵ (λ), η̂(λ)

)
= argminw ,ηΓ(λ)(w , η).

I ρij = x>i xj .

I c̃ = mini ci − ci+1.

There exists 0 ≤ λ0 ≤ ‖y‖2√
c̃

(4− 4ρ2
ij)

1
4 , such that ∀λ > λ0, η̂

(λ)
i =

η̂
(λ)
j



Grouping property ΩS : Interpretation

1. Variables ηi , ηj grouped if ρij ≈ 1 (Even for small λ).
I Similar to Figueiredo and Nowak [2016, Theorem 1], which is

for absolute values of w .

2. SOWL differentiates grouping variable η and model variable
w .

3. Allows model variance within group.

I ŵ
(λ)
i 6= ŵ

(λ)
j as long as c has distinct values.
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Illustration: Group Discovery using SOWL

Aim: Illustrate group discovery of SOWL.

I Consider z ∈ Rd , Compute proxλΩS (z).

I Study the regularization path.
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Proximal Methods: A brief overview

Proximal operator

proxΩ(z) = argminw
1

2
‖w − z‖2

2 + Ω(w)

I Easy to evaluate for many simple norms.

I proxλ`1(z) = sign(z) (|z | − λ)+.

I Generalization of Projected Gradient Descent



FISTA [Beck and Teboulle, 2009]

Initialization

I t(1) = 1, w̃ (1) = x (1) = 0.

Steps : k > 1

I w (k) = proxΩ

(
w̃ (k−1) − 1

L∇f (w̃ (k−1))
)
.

I t(k) =

(
1 +

√
1 + 4

(
t(k−1)

)2
)
/2.

I w̃ (k) = w (k) +
(
t(k−1)−1

t(k)

) (
w (k) − w (k−1)

)
.

Guarantee

I Convergence rate O(1/T 2).

I No additional assumptions than IST.

I Known to be optimal for this class of minimization problems.



Computing proxΩS
Problem:

proxλΩ(z) = argminw
1

2
‖w − z‖2

2 + λΩ(w).

w (λ) = proxλΩS (z), η
(λ)
w = argminηΨ(w (λ), η).

Key idea: Ordering of η
(λ)
w remains same for all λ.

log(λ)
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λ
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I η
(λ)
w = (ηz − λ)+.

I Same complexity as computing the norm ΩS(O(d log d)).

I True for all cardinality based F .
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Random Design

Problem setting: LS-SOWL.
I True model: y = Xw∗ + ε,

(
X>
)
i
∼ N (µ,Σ), εi ∈ N (0, σ2).

I Notation: J = {i |w∗i 6= 0}, ηw∗ = [δ∗1 , . . . , δ
∗
1︸ ︷︷ ︸

G1

, . . . , δ∗k , . . . , δ
∗
k︸ ︷︷ ︸

Gk

].

Assumptions: 3

I ΣJ ,J is invertible, λ→ 0, and λ
√
n→∞.

Irrepresentability conditions

1. δ∗k = 0 if |J c | 6= ∅.

2.

∥∥∥ΣJ c ,J (ΣJ ,J )
−1Dw∗J

∥∥∥
2

β < 1 .

Result[Sankaran
et al., 2017]

1. ŵ →p w∗.

2. P(Ĵ = J )→ 1.

I Similar to Group Lasso [Bach, 2008, Theorem 2].

I Learns the weights, without explicit groups information.

3D: Diagonal matrix, defined using groups G1, . . . ,Gk , and w∗
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2. P(Ĵ = J )→ 1.

I Similar to Group Lasso [Bach, 2008, Theorem 2].

I Learns the weights, without explicit groups information.

3D: Diagonal matrix, defined using groups G1, . . . ,Gk , and w∗



Quantitative Simulation: Predictive Accuracy

Aim: Learn ŵ using LS-SOWL, evaluate prediction error.

Generate samples:

I x ∼ N (0,Σ), ε ∼ N (0, σ2),

I y = x>w∗ + ε.

Metric: E [‖x>(w∗ − ŵ)‖2] = (w∗ − ŵ)>Σ(w∗ − ŵ).

Data:4 w∗ = [0>10, 2
>
10, 0

>
10, 2

>
10]>.

I n = 100, σ = 15 and Σi ,j = 0.5 if i 6= j and 1 if i = j .

Models with group variance:
I Measure E [‖x>(w̃∗ − ŵ)‖2].

I w̃∗ = w∗ + ε̃,
I ε̃ ∼ U [−τ, τ ],
I τ = 0, 0.2, 0.4.

4The experiments followed the setup of Bondell and Reich [2008]



Quantitative Simulation: Predictive Accuracy
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Predictive accuracy results

Algorithm Med. MSE MSE (10th Perc). MSE (90th Perc)

LASSO 46.1 / 45.2 / 45.5 32.8 / 32.7 / 33.2 60.0 / 61.5 / 61.4
OWL 27.6 / 27.0 / 26.4 19.8 / 19.2 / 19.2 42.7 / 40.4 / 39.2

El. Net 30.8 / 30.7 / 30.6 21.9 / 22.6 / 23.0 42.4 / 43.0 / 41.4
ΩS 23.9 / 23.3 / 23.4 16.9 / 16.8 / 16.8 35.2 / 35.4 / 33.2

Table: Each column has numbers for τ = 0, 0.2, 0.4.



Summary

1. Proposed a new family of norms ΩS .

2. Properties:
I Equivalent to OWL in group identification.
I Efficient computational tools
I Equivalences to Group Lasso.

3. Illustrations on performance through simulations.



Questions ?



Thank you !!!
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